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LASERS 

UDC 621.373.826 

COMPENSATION OF SMALL-SCALE PHASE DISTORTIONS BY MEANS OF A FOURIER PHASE 
CORRECTOR 

Moscow KVANTOVAYA ELEKTRONIKA in Russian Vol 12 No 12, Dec 85 (manuscript 
received 18 Mar 85) pp 2501-2504 

[Article by S. I. Klimentyev, V. V. Kononov, V. I. Kuprenyuk, L. D. Smirnova, 
V. V. Sergeyev and V. Ye. Sherstobitov] 

[Textl  The possibility of effectively compensating for 
small-scale phase distortions of the wavefront of a C02 
laser by means of a WFR system based on a Zernike cell is 
experimentally demonstrated. The Strel number of a 
beam transmitted through the phase plate twice was 
increased by compensation from 0.43 to 0.86. The basic 
factors determining the quality of distortion compensation 
are discussed. 

It is demonstrated theoretically in [1,2] that a WFR system not containing 
nonlinear elements and deforming mirrors may be used to compensate for 
distortions in a wavefront with a relief depth less than X/4 and a character- 
istic dimension of p«D, where D is beam diameter.  The essence of the method 
is as follows.  In the case of small phase distortions of the wavefront 
(p(r)<l) the complex amplitudes of the initial wave and the wave subjected 
to wavefront reversal may be represented with sufficient accuracy in the 
form El(r)=A(r)[l+i<t>(r)] and e2(r)=A(r)[l-i<fr(r)], where A(r) is the real 
amplitude of the waves.  Consequently in order to obtain a complexly conju- 
gated wave from e^r), we need to reverse the direction of beam propagation 
so as to change the sign in front of one of the terms in the brackets, or 
what is the same thing, introduce a phase shift that is a multiple of an 
uneven number of half-waves between the waves corresponding to these terms. 
These operations may be carried out by passing the radiation forward and 
back through a Zernike cell [3], which consists of two confocal objectives 
between which a Fourier corrector that shifts the phase of the central maxi- 
mum (the core) of the focal spot by ir(2m+l)/2, m=0,l,2,... is installed in 
their common focal plane.  This paper presents the results of experimental 
research on a mirror version of such a system. 

The experiments were conducted using a flow-through C02 laser with a power 
of around 100 W and a supermode Gaussian beam.  A telescopic system of concave 



Figure 1. Optical Diagram of the Experiment 

mirrors 1 (Ri=l m) and 2 (R2=3.22 m) dilated the beam to a diameter of D=35 mm 
and focused it on a KC1 phase plate 3 simulating an object distorting the 
beam's wavefront (Figure 1). The distorted beam was then transmitted into 
a WFR system consisting of a concave mirror 4 (Ri,=4.7 m), a phase corrector 
5 and terminal mirror 6.  The phase plate, the corrector and the terminal 
mirror were positioned in the focal plane of mirror 4, which insured align- 
ment of the image of the phase plate obtained when the beam is transmitted 
forward and back and the phase plate itself.  The phase corrector consisted 
of a flat mirror with a central hole 4 mm in diameter and a flat mirror 7 
with a 3.8 mm diameter, mounted inside the hole. Mirror 7 could be moved 
along the axis of the hole within a 0-6 u range by means of a piezoelectric 
drive.  Such movement kept the mirrors parallel with a precision of 5".  The 
optical system included two measuring channels:  The first (8,9) recorded 
the power of the beam emerging from the WFR system and concentrated in the 
tails of the angular distribution beyond the bounds of a cone of bearings 
with a flare angle of 80=2.4 mrad; the second channel (10,11) made it possible 
to monitor the power of the emerging beam in the central region (core) of 
its angular distribution.  The diameter of the hole in mirror 8 significantly 
exceeded the diameter of the focused incoming beam, and therefore presence 
of the mirror did not have an effect on its parameters.  Comparison of the 
signals in the measuring channels made it possible to assess the quality of 
compensation of small-scale distortions contributed by the phase plate. 

Phase plates with a distortion scale p=3 mm, typical of repetitively pulsed 
C02 lasers, were used in the experiments.  For convenience of recording the 
scattered radiation the phase plates were manufactured in the form of a 
regular lens-type grating (see the interferogram in Figure 2a).  The relief 
depth of the wavefront acquired by transmission through the phase plate is 
around 2 u in this case (around A/5 at the wave's working length). 
Figure 2b shows photographs of the angular distributions of a beam striking 
the phase plate and a beam which has passed through the phase plate twice. 
(These photographs were obtained by burning organic glass at the same 
exposure time.)  It is evident that introduction of a phase plate causes 



Figure 2. Interferogram of a Phase Plate (a) and the Angular 
Distribution of Power for the Incoming Beam (b) and a 
Beam Transmitted Through the Phase Plate Twice (c): 
One band in the interferogram corresponds to a phase 
run-on of 0.315 u in a single pass 

scattering of a significant (£50%) proportion of the energy from the core 
into the tails of the angular distribution. The main part of the scattered 
radiation is concentrated in four diffraction maximums at an angular distance 
of approximately A/p=3.5 mrad from the center. However, owing to large-scale 
variations in the grating parameters along the cross section of the beam, 
the angular spectrum possesses additional components in one of the directions, 
including components in direct proximity to the core. 

The diameter of the corrector's small mirror was selected with regard for 
technical limitations; therefore its dimension was matched to the dimension 
of the core of the focal spot by appropriately selecting the focal length 
F of mirror 4. When F=2.35 m the diameter of the core was around 1 mm, and 
the distance from the axis of the core to the lateral maximums was around 
9 mm, which insured the necessary separation of the main and scattered 
components of the wave in the Fourier plane. 

The effect of the phase shift contributed by the Fourier corrector between 
the core and the tails of the angular distribution upon the power of the 
emerging beam concentrated in the tails was studied in experiments.  For this 
purpose a linearly varying voltage was applied by a piezoelectric drive, and 
the dependence of radiation power in the measuring channels on mutual displace- 
ments of the corrector's mirrors was recorded.  The results are shown in 
Figure 3. At a phase shift equal to zero, the power of radiation in the tails 
W£ exceeds the power in the core W£ by a factor of 1.3.  This means that in 
the absence of correction, 57 percent of the total power of the incoming beam 
is scattered into the tails in response to passage through the phase plate 
twice.  In this case Strel's number is S=W£/(W£+W£p)=0.43.  As the phase 
shift increases, the power scattered into the tails varies with a period of 
2IT, attaining a minimum of around 0.25W£ at displacements that are multiples 
of ir(2m+l).  The power in the core W^ varies oppositely in phase with Wjjp. 
This indicates periodic "pumping" of energy from the tails into the core and 
back as the phase shift increases.  (Presence of high frequency pulsations 
in curve 2 are caused by noise produced by the power measuring unit, which 
is operating in its most sensitive range.) The maximum payoff in power con- 
centrated in the core is equal to 2, which corresponds to attaining S=0.86. 
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Figure 3. Dependence of the Power in the Tails (1) and the Core 
(2) of the Angular Distribution of the Emerging Beam on 
the Phase Shift Between the Core and Tails 

Thus effective compensation of distortions arising as a result of scattering 
by small-scale heterogeneities was observed in the experiment.  Seventy-five 
percent of the power W£ concentrated initially in the tails was "pumped" 
into the core of the angular distribution. 

One of the reasons for incomplete "pumping" might have been the influence 
of instrumental errors.  To assess this influence the phase plate was replaced 
by a plane-parallel plate.  An experiment showed that of the remaining 
"unpumped" proportion of power equal to 0.25W£ , approximately 0.05WjL may 
in fact be associated with the contribution of instrumental error.  Presence 
of tails in the distribution with such energy may be the consequence of 
differences of the real incoming beam from a Gaussian beam, and of the result 
of scattering of radiation by the corrector's mirrors, which are characterized 
by greater manufacturing error near their common boundary.  Inaccuracies in 
adjustment did not affect the quality of correction, inasmuch as the position 
of the core on the axis of the corrector was set with a precision of 0.2 mm, 
and a significant drop in the quality of wavefront reversal was observed at 
a displacement greater than 1.5 mm. 

Thus presence of the observed residual tails of the angular distribution con- 
taining power approximately equal to 0.2W° was determined by the properties 
of the WFR device under analysis.  One of the obvious reasons was dilation 
of the central maximum of the focal spot in the plane of the corrector owing 
to the large-scale distortions contributed by the phase plate, mentioned 
earlier.  According to [2], when such dilation occurs, WFR error associated 
with "cutting" of the core by the margin of the corrector's small mirror 
grows.  The second reason might have involved appearance of small-scale beam 
amplitude distortions at the output of the WFR system, caused by transforma- 
tion of terms that were quadratic with respect to perturbation cj>(r) in the 
corrector.  Determination of the contributions made by each of the factors 
requires additional theoretical and experimental studies, and goes beyond 
the bounds of this work. 



Let us now examine a problem of practical interest—the possibility of 
compensating for small-scale phase distortions arising when transmission 
occurs through a heterogeneous medium of finite length.  This case differs 
from that examined above in that a beam that passes through heterogeneities 
located some distance away from the input plane of the WFR device (the plane 
in which the phase plate was positioned) may experience small-scale spatial 
modulation of intensity by the moment it enters the device.  The device 
examined here shifts by tr the phase of all angular components outside the 
bounds of the corrector's small mirror, irrespective of whether these 
components came into being as a result of phase or amplitude modulation of 
the field in the cross section of the incoming beam. Thus in contrast to 
an ideal WFR mirror, it also reverses the small-scale structure of intensity, 
replacing the intensity maximums by their minimums. From the standpoint of 
compensating for the influence of long small-scale heterogeneities, this effect 
is harmful. It must make a small contribution in the case where the input 
plane of the WFR system is positioned a distance I  from any point of the 
heterogeneous medium which is less than the distance p2/X at which phase 
heterogeneities transform into amplitude heterogeneities. An additional 
experiment confirmed these ideas.  As was anticipated, shifting of the phase 
plate from the plane of the image caused a drop in the proportion of energy 
in the tails that was "pumped" into the core of the angular distribution, 
such that this proportion was halved at a displacement of £0=0.75p

2/A. 
This property of the system under examination here is apparently the most 
significant factor limiting its practical use as a means of compensating for 
the influence of small-scale heterogeneities of some length.  It should be 
noted, however, that in a number of applications the condition l<l0  may be 
satisfied. Thus for example, in the case where p=5 mm and X=3 u, Z0-6 m. 

Thus the possibility of effective compensation of small-scale distortions 
in the wavefront of laser radiation having a depth <A/4 by means of a WFR 
operation effected without utilizing nonlinear elements was experimentally 
demonstrated in this work. As our evaluations show, in a number of cases 
use of this system can raise the axial brightness of a laser by several 
orders of magnitude. 
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LASERS 

UDC 621.373.826.038.823 

REPETITIVELY PULSED AND CONTINUOUS WAVE C02 LASERS PUMPED BY A PULSED SELF- 
SUSTAINED DISCHARGE FOR THERMAL PROCESSING 

Moscow KVANTOVAYA ELEKTRONIKA in Russian Vol 12, No 12, Dec 85 (manuscript 
received 26 Mar 85) pp 2467-2470 

[Article by Drobyazko, Yu. V. Pavlovich and Yu. M. Senatorov, Institute of 
Atomic Energy imeni I. V. Kurchatov, Moscow] 

[Text]  The design and characteristics of the radiation from 
fast-flow repetitively pulsed (power up to 3.5 kW) and 
continuous wave (up to 1.8 kW) C02 lasers excited by a pulsed 
self-sustained discharge are described.  A laser pulse 
duration of up to 5 msec is attained and continuous modulated 
radiation is achieved for the first time by exciting the 
active medium with short (1-3 usec) discharge pulses. 
Examples of using such a laser in thermal processing are 
presented. 

1.  Introduction 

In contrast to steady-state lasers, repetitively pulsed C02 lasers make it 
possible to regulate not only the mean lasing  power by means of the pulse 
repetition frequency but also the pulse power by changing the energy and 
duration of the laser pulse.  In this case the pulse power may exceed the 
laser's mean power by several orders of magnitude.  As is demonstrated in 
[1,2], the effectiveness with which radiation from a pulsed C02 laser inter- 
acts with the target depends strongly on the laser pulse duration:  At 
shorter laser pulses (around 1 usec) the optical breakdown plasma effectively 
shields the target from incident radiation. 

Creation of high-power Ul kW) repetitively pulsed C02 lasers with a long 
laser pulse (20-500 usec) [3-5] and use of these lasers for welding [3,6] 
and hole drilling [7] demonstrated the high effectiveness and wide capabili- 
ties of such lasers. 

The duration of the laser pulse is increased in [3,5] by reducing the propor- 
tion of C02, increasing the proportion of nitrogen and decreasing the mixture's 
total pressure, while in [4] this increase is achieved by displacing the axis 
of the resonator downward along the flow in relation to the discharge axis. 



Pulse energy and laser mean power decrease noticeably in this case. This 
is why increasing pulse energy and mean power at a pulse duration greater 
than 100 usec and creation of repetitively pulsed C02 lasers with TpSl msec 
and a mean power of 1-2 kW is an urgent task. 

This paper describes the design and presents the characteristics of laser 
radiation produced by a repetitively pulsed C02 laser with a mean power of 
up to 3.5 kW and a pulse duration of 4-5000 usec, excited by short (around 
1 usec) pulses of a self-sustained discharge; continuous modulated radiation 
is obtained from such a laser. 

2.  The Design of the Laser and the Characteristics of Its Gas-Dynamic Loop 

The laser housing is made from stainless steel 6 mm thick, it is cylindrical 
in shape, and its lateral flanges, which are 20 mm thick, are made from brand 
D16T duralumin. 

The cavity of the cylinder is partitioned by retractable panels forming the 
laser's gas-dynamic channel.  A gas discharge chamber, a heat exchanger, fans 
and guides that shape the gas-dynamic flow are positioned on the panels. 
Voltage, electrolyte, water and diagnostic lines are introduced through two 
fiber glass laminate plates positioned in the upper part of the housing.  The 
resonator block is secured independently and connected hermetically to the 
chamber through a rubber diaphragm.  The design of the adjusting units permits 
work with stable and unstable resonators, and change in the number of passes 
from one to five.  In work with a stable resonator, a GaAs plate cooled by 
contact with a polished metal support was used as the exit mirror. The working 
mixture is pumped through the discharge zone by two aircraft fans, the charac- 
teristics of which are given in [5].  The fans are turned by 5 kW direct 
current motors.  Low power voltage (27 V) and small dimensions made it possible 
to install the motors inside the chamber, and presence of an excitation wind- 
ing makes it possible to smoothly adjust the motor rpm from 3,500 to 9,000. 
The motor is rigidly connected with the fan, and to reduce vibration the 
entire structure is secured to a rubber membrane. 

An electrode system with a plasma cathode and an ultraviolet pre-ionization 
working mixture similar to that described in [8] was used to excite a piilsed 
glow discharge.  The structure of the electrode system made it possible^ to 
excite the active medium both within the entire 100x15x6 cm discharge gap 
and at half the cathode at gap 6 with a flow width of 7.5 cm.  This makes 
it possible to double the maximum pulse repetition frequency at the same gas 
mixture flow rate.  The rate of the gas flow increases linearly with rpm, 
being 85 and 120 m/sec when one and two fans are turned on at 9,500 rpm. 
Variation of flow rate in response to change in pressure and composition of 
the mixture (p=40-160 mmHg, XC02=1-30 percent) did not exceed 15 percent. 
As the energy contribution to the discharge increased to 30 kW, the flow rate, 
which was measured in this case upstream from the discharge, did not change. 



3.  Characteristics of Laser Radiation 

The oscillation mode in the case of work with a stable resonator was multimode, 
and divergence at the 0.84 level varied from 2 to 4 mrad depending on the 
number of passes.  In work with an unstable resonator, divergence better than 
1 mrad was achieved.  This made it possible to obtain a power density from 
105 to 109 W/cm2 in the spot using standard focusing systems (lenses, mirrors). 

W.KST   „ 
(1) 
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Figure 1.  Dependence of Radiation Mean Power on Pulse Repetition 
Frequency When p=120 mmHg, xp=30 usec, v=90 m/sec in a 
C02:N2:He=17:25:58 Mixture for Discharge Volumes of 
100x15x6 (1) and 100x7.5x6 cm (2) 

Key: 
kW Hz 

As the pulse repetition frequency grows, mean power increases linearly until 
f=fkp, where fu is frequency depending on the relative energy contribution, 
the gas flow rate, the width of the discharge along the flow and the resistance 
of the discharge to gas-dynamic perturbations.  As a rule, fw is two to five 
times less than the  rate   of gas replacement in the discharge gap. 
Figure 1 shows the dependence of mean power on frequency in the case of 
excitation of the entire discharge volume (curve 1) and half of it (2). 
Doubling of the gas replacement frequency in the discharge zone made it 
possible to almost double fw,.  The decrease in the maximum mean power in the 
second case is explained by nonoptimum operation of the resonator.  In our 
experiments f^p was twice less than the  rate    of gas replacement in the 
discharge zone. At a frequency f>fkp mean power falls, and the stability of 
the discharge and of laser action are achieved through a decrease in the 
energy contribution to the discharge.  When f=l kHz (curve 1), laser action 
was achieved by superimposing two discharge pulses on the same portion of 
gas. 

As is demonstrated in [1-3,6], the effectiveness with which pulsed and 
repetitively pulsed C02 laser radiation interacts depends strongly on laser 
pulse duration. Mean power and duration of laser pulses were measured in 



relation to different mixtures (He=50%, C02=2-30%, N2=20-48%) and pressure 
variation from 20 to 160 mmHg, and the dependence of mean power on laser pulse 
duration was plotted. 

Figure 2 shows the envelope of these curves for a three-pass resonator with 
a transmittance of 50 percent, coinciding with the discharge (curve 1) and 
shifted 8 cm downward along the flow (curve 2), and for a resonator with 
15 percent transmittance (correspondingly curves 3 and 4).  The pulse repeti- 
tion frequency is 340 Hz.  It is evident that a maximum power of 3.5 kW 
(curve 1) was obtained when tp=40 usec with the coincident resonator with 
50 percent transmittance. As xp grows, mean power falls rapidly, being but 
0.7 kW at Tp=0.8 msec. Displacement of the resonator (curve 2) makes it 
possible to somewhat increase mean power when Tp£0.5 msec, which is associated 
with more effective pick-off of excitations from the part of the active medium 
at the edge of the discharge (downstream) owing to longer presence of this 
part of the active medium in the resonator. 

Figure 2.  Dependence of Maximum Mean Power on Laser Pulse Duration 
for a Stable Z-Shaped Resonator (See Text) 

Key: 
kW msec 

Use of a resonator with 15 percent transmittance (curve 3) made it possible 
to significantly raise mean power when xp&0.3 msec and maintain it at a level 
of 1.8 kW when xpS5 msec.  Figure 3 shows the shape of laser radiation for 
this resonator at a pressure of 150 mmHg and a C02:N2:He=2:49:49 mixture in 
the case of both single pulses (a,b) and at frequencies of 200 (c) and 
400 Hz (d).  It is evident that presence of a flow significantly increases 
laser pulse duration owing to passage of practically all of the excited gas 
through the oscillation zone.  A high resonator Q-factor causes an increase 
in output power at small C02 concentrations.  At frequencies over 200 Hz, 
laser pulses overlap, and we achieve continuous laser action.  The obtained 
results significantly widen the technological possibilities of repetitively 
pulsed C02 lasers. 
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Figure 3. Shapes of a Laser Pulse for a Stable Three-Pass Resonator 
Coinciding with the Discharge (R=85%) at v=0 (a) and 
70 m/sec (b-d) (See Text) 

Key: 
1. msec 

Figure 4.  Examples of Using a Repetitively Pulsed C02 Laser in 
Thermal Processing:  a--penetration of Khl8N10T steel, 
h=12 mm, xp=50 usec, f=250 Hz, W=1.5 kW, v=0.2 mm/sec; 
b--cavities in Khl8N9T steel, f=200 Hz, Tp=100 usec, 
W=l kW, total number of pulses 250 and 500; c--strengthen- 
ing zone in brand 45 steel, hmax=0.65 mm, f=200 Hz, 
W=l kW, T=150 usec, ray diameter on surface 3 mm, rate 
of movement of article 6 mm/sec, hardness HV=700 

4.  Possible Uses of Repetitively Pulsed C02 Lasers 

Figure 4 shows photographs of a penetration, a hole and a tempered zone on 
brand 45 steel obtained with the described laser.  Note that at low target 
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speeds (around 0.1 mm/sec), record-low relative power outlays were obtained 
per unit of seam depth (40 W/mm) at a seam depth to mean width ratio of 25. 
By varying the laser operating mode we can adjust the diameter of the hole 
from 0.03 to 2 mm, and the depth of the hole from 0.1 to 24 mm. The time 
it takes to drill a hole with a diameter of 0.8 mm and h=6 mm is around 
1 sec at a laser mean power of 2 kW. 

The hardness of the tempered layer is somewhat greater than in the case of 
tempering with a continuous wave laser, and maximum depth is 0.65 mm. 

Thus a repetitively pulsed C02 laser with a mean power of up to 3.5 kW and 
a pulse duration from 4 to 5000 usec has been created. For the first time 
continuous oscillation was achieved with a fast-flow repetitively pulsed laser 
using short (1-3 usec) discharge pulses to excite the active medium. Examples 
of industrial uses of the laser are presented. 
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ACTIVE MEDIUM FORMATION IN LASERS USING MIXTURES OF INERT GASES AND OPTICAL 
BREAKDOWN PUMPING 

Moscow KVANTOVAYA ELEKTRONIKA in Russian Vol 12 No 12, Dec 85 (manuscript 
received 18 Jul 85) pp 2389-2391 

[Article by V. V. Apollonov, S. I. Derzhavin, A. M. Prokhorov and A. A. 
Sirotkin, Institute of General Physics, USSR Academy of Sciences, Moscow] 

[Text]  The parameters of the active medium of lasers using 
He-Xe (X=2.03 and 2.65 u) and He-Ar (X=1.79 u) gas mixtures 
and pumping  by    optical breakdown by C02 laser radiation 
are analyzed.  It is demonstrated that laser action arises 
as a result of the joint action of UV radiation and the 
shock wave formed in response to optical breakdown. 

Optical breakdown is used to pump the active medium of lasers owing to the 
prospects of achieving laser action in the far UV range. 
Lasers using optical breakdown pumping and operating in the IR and visible 
ranges are known to exist [1-4],  Nonetheless the mechanisms responsible 
for formation of inversion in such active media have not yet been studied 
sufficiently.  Thus it was asserted in [1,2,4] that inversion of the 
population in lasers using inert gas mixtures occurs in recombining optical 
breakdown plasma when the plasma disperses into the surrounding buffer gas. 
However, detailed research on active medium parameters that could confirm 
this mechanism with certainty was not carried out. 

We analyzed the mechanisms behind formation of an inversion in lasers using 
inert gas mixtures pumped by optical breakdown.  For this purpose we 
conducted interferometric and spectroscopic research on the parameters of 
the active media of He-Xe (A=2.03 u) and He-Ar (A=1.79 u) lasers. 

The experimental set-up (Figure 1) is described in [4,5].  In our experi- 
ments the length of the plasma band I  was increased to 9 cm.  The parameters 
of the active medium were studied by the method of double-exposure holo- 
graphic interferometry.  A ruby laser with a radiation pulse duration of 
x-20 nsec was used as the light source in the interferometer.  Interferograms 
of the laser plasma were recorded with a variable delay At relative to the 
moment of appearance of optical breakdown near the target. 
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Figure 1. Diagram of Experimental Set-Up:  l--ruby laser; 2-- 
cylindrical lens; 3--focusing optics; 4--light divider; 
5--wedge; 6--photographic plate; 7--diaphragm 0 1 mm; 
8--aluminum target; 9- 
11--L1F plate 

-Ge:Au receiver; 10--C02 laser; 

Comparison of the laser action parameters of the plasma laser and the results 
of interferometric analysis of its active medium showed that the moment of 
appearance of laser action coincides with the moment that a Shockwave reaches 
the region of the resonator's caustic, while the optical breakdown plasma 
does not attain the region of laser action, and thus it cannot participate 
directly in inversion formation. 

The experimental dependencies of the radius of the shock wave on time arrived 
at in this work agree well with the model of a cylindrical point explosion 
[7].  This made it possible to account for the contribution of heavy particles 
to refraction of the plasma and to determine shock wave parameters when 
processing the interferograms.  Figure 2 shows an interferogram for At=l usec 
corresponding to the start of the oscillation pulse of the plasma laser, 
and the density distribution of electrons Ne and gas p calculated on the 
basis of the latter.  The low gas temperature behind the shock wave's front 
Tr~0.2 eV shows that the shock wave cannot serve directly as an active medium 
pumping source; nor, all the more so, can it be the cause of formation of 
a significant electron concentration, Ne~10

16 cm-3. 

It is well known that in lasers using gas mixtures containing helium, the 
active medium is formed as a result of Penning1s reaction between a working 

Kn 
atom and excited helium [6].  For example He* + Xe—>-Xe++He + e.  In this case 
the rate of Penning's reaction R=KnNue*Nxe depends on the gas temperature 
[6,9] and the concentration of particles participating in the reaction 
%e*> ^Xe- 1° our experiments presence of excited atoms before the front of 
the shocK wave was confirmed by luminescence of the Hel, Xel and Xell lines. 
In particular these lines may have formed as a result of diffusion of 
resonant UV radiation [7] from the hot core of the optical breakdown plasma. 
The long delay in laser action makes it possible to suggest that atoms in 
excited state with a long life span participate in inversion formation. 

The increase in concentration of interacting particles (at a degree of 
compression r)=p/Po=4) and heating of the gas to a temperature of Tr~0.2 eV 
occurring with the advent of the shock wave cause a sharp increase in the 
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Figure 2.  Interferogram of the Optical Breakdown Plasma of an 
He-Xe Gas Mixture (TH(C02)=300 nsec, At=l usec) (a) and 
the Dependence of Electron Density Ne and Relative 
Density of Heavy Particles p/p0 on Distance r from the 
Target, Obtained from the Interferogram (b) 

rate of Penning1s reaction.  A direct confirmation of Penning's reaction 
can be found in absorption of the low-intensity tail of the radiation pulse 
from the C02 laser in the front of the shock wave (Figure 3a) in He-Ar or He-Xe 
gas mixtures.  At the same time in pure He, absorption of radiation from 
a C02 laser was not observed in a similar situation (Figure 3b).  Owing to 
the large concentration of He (He:Xe=He:Ar=1000:1, p~l atm) the electrons 
are cooled in collisions with it to the gas temperature within time 
Tcool=10 nsec-  A supercooled plasma with Te~Tr~0.2 eV, Ne~10

16 cm-3 is 
formed; recombination pumping then occurs in this plasma (xrec=

5 nsec> 
where Trpn ~ {TJ'I'NI)-

1
) [8]'. Lrec 

Figure 3.  Interferograms of Plasma Formed by Optical Breakdown 
of He-Xe Mixture (a) and He (b); (TH(C02)=3 usec): 
The arrow indicates the direction of propagation of 
C02 laser radiation 
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Note also that laser action was observed at a fixed distance, for the given 
conditions, from the axis of the plasma band along every generatrix of the 
cylindrical front of the shock wave (figures 2,3). This indicates cylindrical 
symmetry of the physical conditions, and it may serve as a confirmation of 
the plausibility of using the model of a cylindrical point explosion. 

To confirm the above-described mechanism behind formation of the active medium 
we conducted experiments in which the gas mixture was additionally illuminated 
by UV radiation from a spark electric discharge. In the presence of 
illumination activated simultaneously with the appearance of optical breakdown, 
the threshold energy of the C02 laser at which laser action is still observed 
in an He-Xe laser, decreases significantly (by a factor of 1.5 at a discharge 
energy of Ep~EH(C02)~A J). In this case the delay between the 
appearance of optical breakdown and laser action remained practically constant. 
Thus UV radiation from the plasma does in fact play a significant role in 
formation of the active medium. At the same time, a large At~l usec and 
constancy of the delay in laser action in the presence of additional UV 
illumination indicate that the inversion forms when the gas mixture is 
compressed by the shock wave. 

Thus, appearance of laser action in inert gas mixtures subjected to pumping 
by optical breakdown may be explained by the joint influence of    UV radia- 
tion and the shock wave on the gas mixture. The proposed system makes it 
possible to explain the experimental dependencies obtained in [1,2,4]. 

The authors acknowledge G. R. Toker and A. V. Borovskiy for their useful 
discussion and help in the experiment. 
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[Text] The effect of the finite width of a C02 laser line 
on radiation transmission on an atmospheric path is investi- 
gated.  Numerical calculations are used to demonstrate that 
an increase in the half-width of the lasing line to several 
hundredths of an inverse centimeter makes it possible to 
significantly improve transmission of laser radiation 
through the atmosphere (for a vertical path from the earth 
surface to the upper boundary of the atmosphere, transmission 
may almost double in comparison with monochromatic radiation). 
An increase in transmission caused by detuning of the lasing 
line from the resonant absorption line is also enhanced when 
the finite width of the lasing line is taken into account. 

As it propagates through earth atmosphere, laser radiation is attenuated owing 
to absorption by air molecules and aerosol particles.  There is important 
practical significance to studying the possible ways of improving trans- 
mission of laser radiation through the atmosphere.  Inasmuch as molecular 
absorption has a clearly pronounced selective nature, attenuation of laser 
radiation may be changed significantly by, for example, shifting the lasing 
line frequency relative to the absorption lines of atmospheric gases. The 
effect of shifting lasing lines on transmission was assessed in a number of 
works (see for example [1]). But in these works--and incidentally in practi- 
cally all works in which attenuation of laser radiation in the atmosphere 
is calculated [1,2]--laser radiation is assumed to be strictly monochromatic. 
An exception is a recently published work [3] in which an approximate formula 
is obtained for transmission of narrow-band laser radiation, and in which 
the conditions governing the applicability of the monochromatic approximation 
for evaluating transmission of laser radiation on a homogeneous (horizontal) 
atmospheric path are determined on the basis of this formula. 

In high pressure C02 lasers the width of the emission line may exceed several 
hundredths of an inverse centimeter (see for example [4]), which is comparable 
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with the widths of the absorption lines of atmospheric gases on a surface 
path, and significantly greater than the latter in the upper layers of the 
atmosphere.  In this case the supposition of strict monochromaticity of laser 
radiation is not always valid, and it would be interesting to assess the 
influence of this effect on transmission of laser radiation through the 
atmosphere. 

We know that attenuation of C02 radiation in the region around 10.6 u stems 
basically from resonant absorption in the lines of atmospheric carbon dioxide, 
as well as from continual absorption by water vapor.  It would be natural 
to expect that widening of the emission line would lead to a decrease in 
resonant absorption (given constant continual attenuation).  The objective 
of this paper is to obtain numerical estimates of this "clarification" effect 
in relation to homogeneous (horizontal) and heterogeneous (vertical) atmo- 
spheric paths.  ("Clarification" is defined as increasing transmission of 
radiation through the atmosphere by means of the described mechanism while 
maintaining the atmosphere itself constant.) We will briefly describe the 
procedure for calculating transmission of quasi-monochromatic C02 laser radia- 
tion in the region around 10.6 u (the half-width of the emission line can 
serve as a measure of quasi-monochromaticity), and we will present some 
results of numerical calculation of the influence of the finite width of the 
C02 laser line and its detuning from the resonant absorption line on atmo- 
spheric transmission below. 

Transmission in relation to quasi-monochromatic radiation may be written in 
the form 

rA* = THl0 (v.) jv d v g (v - v.) TCOi (v), (I) 

where g(v-v0)--function normalized to unity describing the contours of an 
emission line with its center at frequency v0; Av--spectrum interval in which 
g(v-v0) is different from zero. Monochromatic transmission TC02(v) i-n formula 
(1), which corresponds to resonant absorption of radiation by atmospheric 
carbon dioxide, is described by known expressions, which have the following 
form in relation to horizontal and vertical atmospheric paths: 

fco. (v) = 

exp[-£COa(v, z) L]; 

(2) 
exp — J *co,(v. 2">dz' 

The absorption coefficient at height z is determined by the expression 

feco, (v- z> = s <z>-/ (v - vo • V (z)) "co. (z). (3) 

where S and f--intensity and shape of the contour of an absorption line with 
its center at frequency v'0;  ^(z)--set of parameters characterizing this 

18 



contour; uco2"-concentration of carbon dioxide.  Transmission TJI2O(V0) in 
(1), which corresponds to continual absorption of radiation by water vapor, 
may be described by expressions of the form (2) with an absorption coefficient 
kjj o(vo>z) given, for example, by the approximation formula suggested in [5]. 
The atmospheric "clarification" effect is determined by the variable 

T) = T^/T (v0) = rco>, Av/rc0, (v0) (4> 

and it does not depend on continual attenuation. 

In the numerical calculations of TAv and n, (Foygt's) function was used to 
describe the contour of the absorption line, and the contour of the emission 
line was defined by a Gaussian function. The parameters of the absorption 
lines were taken from [6]. During integration in (2) with respect to the 
height of the concentration of absorbing gases, the temperature and pressure 
at level z were determined by polynomial interpolation of the appropriate 
tables serving as standard models of the atmosphere (the dependencies presented 
in the figures below correspond to the model for a mid-latitude summer) [7]. 
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Figure 1. Dependence of n on the Half-Width yna3 of the Emission 
Line P20

12C1602 for a Horizontal Path with Length L=50 
(a) and 100 km (b) at Height z (6=0) 

Figure 2.  Dependence of Transmission TAv on a Vertical Path from 
Level z=0 to the Upper Boundary of the Atmosphere on the 
Half-Width ■xna3  of the Emission Line P22 

12C1602 at 
Different Magnitudes of Detuning 6 
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Numerical calculations were used to study the dependence of T^v and r\  on the 
half-width Y^a3 °f tne emission line of a C02 laser; the contour of the 
emission line g(v-v0) was assigned a particular shape. Moreover the dependence 
of transmission T^v on the half-width of the lasing line was determined in 
relation to the case where the position of the lasing line v0 does not coincide 
with the center v'Q  of the absorption line. The calculations were made 
for different magnitudes of detuning <5=v0-Vo lying within the range 6= 
=0-0.03 cm"1. Horizontal paths with length L=50 and 100 km at heights 
z=5, 10 and 30 km and vertical paths from level z=0 to the upper boundary 
of the atmosphere were examined. The results of the numerical calculations 
are illustrated in figures 1 and 2. 

The research permits the following conclusions: 

1. Use of C02 lasers with a lasing line half-width of several hundredths 
of an inverse centimeter as radiation sources makes it possible to significant- 
ly improve transmission of laser radiation through the atmosphere (by almost 
twice for a vertical path for which 6=0 and Yjia3=P*l cm_1)- 

2. The transmission of atmospheric paths in relation to fixed magnitudes 
of detuning from the frequency of the resonant absorption line increases with 
the width of the lasing line. 

3. It may be expected that consideration of the real (that is, nonmonochroma- 
tic and, in a number of cases, non-Gaussian) shape of the C02 laser line in 
relation to certain paths and sufficiently wide lasing lines would lead to 
noticeable reduction of losses caused by thermal defocusing of radiation owing 
to a noticeable reduction of absorption of laser radiation in the resonant 
absorption lines of atmospheric C02. 

Use of different isotope modifications of the carbon dioxide molecule in C02 
lasers also makes it possible to increase the transmission of atmospheric 
paths.  Calculation of monochromatic transmission on a vertical atmospheric 
path in relation to line P20 of 

1ZC1802 (v=l,068.942 cm
-1) and 13C1602 (v= 

=896.909 cm"1) isotopes and in relation to the same conditions of a mid- 
latitude summer produce values of 0.61 and 0.67 respectively. However, in 
our opinion this method of controlling the radiation spectrum of a C02 laser 
is disadvantageous in comparison with that described above due to the high 
cost of carbon dioxide isotopes. 
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[Text] The design principles of lasers with wavefront 
reversing mirrors are examined. Methods of determining the 
transverse and longitudinal mode structure in these lasers 
are described. The advantages and shortcomings of different 
systems with WFR mirrors are analyzed, and they are 
compared with each other and with conventional lasers.  The 
trends and basic directions of further research are discussed. 

1. Introduction 

In this review we will discuss a question which has attracted a large number 
of researchers in the last few years.  We are referring to lasers in which 
one of the mirrors is replaced by an element that reverses the wavefront 
(the WFR mirror) [1-7J.  Increasing the axial brightness of laser radiation 
is associated in many ways with eliminating the influence of optical hetero- 
geneities in the index of refraction of the amplifying medium.  As a rule 
these heterogeneities are small in scale, and they vary irregularly in space 
and in time.  In this situation optical heterogeneities of the medium may be 
compensated only by using WFR methods. 

Interest in lasers with WFR mirrors results from the fact that they possess 
properties that make them significantly different than lasers with conven- 
tional mirrors.  The most important difference is that compensation of intra- 
resonator aberrations is possible under certain conditions in WFR mirror 
lasers.  It should also be noted, however, that a resonator equipped with a 
WFR mirror has a transverse mode structure similar to a confocal resonator 
equivalent to it (and consequently the same selective properties).  Therefore 
as with the latter, an angle selector must be installed in it in order to 
isolate one lowest transverse mode (a supermode laser insures high direction- 
ality of the laser radiation). A WFR resonator is significantly different 
from a conventional one in that when a medium with a heterogeneous index of 
refraction is introduced into the resonator, the angle selector in the WFR 
resonator does not introduce additional losses.  The objective of obtaining 

22 



supermode operating conditions predetermines the importance of calculating 
the transverse mode structure in WFR mirror resonators with limiting 
diaphragms. 

Another distinguishing property is high stability of the frequency spectrum 
of generated radiation which is determined by the stability of the spectrum 
of reference waves for a WFR mirror based on four-wave mixing, and which 
depends slightly on the distance between the WFR mirror and the exit mirror. 
Thus, a laser lasing at the central frequency of the amplification loop of 
an active medium would continue to generate at the same frequency irrespec- 
tive of changes in the resonator's length [8,9]. 

The importance of studying lasers with WFR mirrors is also determined by the 
fact that this system is precisely what may be the variant that will resolve 
the difficulties associated with the WFR method (formation of high quality 
reference and priming waves, effective use of energy stored in the medium, 
synchronization of the reference and signal waves, stability of the spectrum 
and so on). 

The objective of this review is to not only systematize and analyze existing 
results, but also to assess the further prospects of using WFR mirrors to 
create lasers emitting highly directional radiation. 

The entire diversity of lasers may be subdivided, based on the type of WFR 
mirror, into four basic groups:  lasers with a WFR mirror based on four- 
wave mixing (WFR-FWM); with an SBS mirror; with a retromirror effecting 
pseudorotation, and with an adaptive mirror. The review will devote the 
greatest attention to the first and third groups, which have been studied most 
completely to date. 

2.  Lasers with FWM Mirrors 

In terms of the method used to create reference waves, lasers with FWM mirrors 
are subdivided into lasers with an external source of reference waves and 
with a self-pumping FWM mirror [10]. 

The design of lasers with an external source of reference waves, diagrammed 
in Figure 1, is similar to the design of conventional lasers with the 
exception that a conventional mirror is substituted by a FWM mirrorj  in which 
reference waves are formed by an external source.  Such a laser is extremely 
ineffective, because the required pumping power usually exceeds the power . 
of the exit radiation of the WFR mirror.  However, because of their relative 
simplicity, such lasers can be used as an example to reveal the characteristic 
features of WFR mirror lasers. 

Lasers with a self-pumping FWM mirror do not require a separate additional 
source of two intensive complexly conjugated reference waves. Part of the 
radiation withdrawn from the laser exit is used as the pumping radiation; 
it propagates through a nonlinear medium twice in opposite directions. The 
simplest design of such a laser is shown in Figure 2; other possible designs 
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Figure 1. Laser with an FWM Mirror with an External Source of 
Reference Waves: l--exit mirror; 2--active medium; 
3--FWM medium; 4--pumping laser 

Figure 2. Laser with Self-Pumping FWM Mirror: 
4--exit mirror; 5--active medium; 6- 
7--opto-electronic switch 

l-3--mirrors; 
-FWM medium; 

of lasers with a self-pumping WFR mirror will be described below (see 
figures 9,12).  For amplifying media characterized by a high gain (over 102 

per pass) and considerable heterogeneities in the index of refraction, a 
resonator with a self-pumping WFR mirror insures the greatest effectiveness 
of the entire laser system [11]. 

One of the most important problems arising in laser research is that of 
determining the form of the fields, the types of oscillations and the corre- 
sponding frequencies and losses.  These characteristics are precisely what 
strongly influence the effectiveness and modal volume of the laser and the 
divergence of laser radiation.  Let us first describe the structure of the 
longitudinal modes of a WFR-FWM resonator in its simplest design with external 
pumping of reference waves and without aperture limitations on the mirrors 
and in the volume of the resonator.  Then we will dwell in detail on how 
aperture limitations and imprecision of the reversal operation of a WFR mirror 
determine the transverse structure of the modes, and we will study the work 
of a WFR resonator with a self-pumping FWM mirror. 

Next we will concern ourselves chiefly with the frequency and spatial struc- 
ture of fields in WFR mirror lasers, and therefore we will assume that 
amplification in one pass compensates for losses in the resonator. 

2.1.  Structure of Longitudinal Modes of a Resonator with a WFR-FWM 
Mirror Without Aperture Limitations 

First let us examine a WFR mirror based on use of FWM with external reference 
waves Ex, E2 and frequencies a)1=(jj2

=w0.  When a wave from within the resonator 
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U3exp (ik3z-iu)3t) strikes such a mirror, a reflected wave U^exp (-ik^z-ia^t) 
arises, where U^e1* and w^w«.-«»^ phase 41 is determined by the absolute 
phase of the product X

(3)EiE2. For crossing reference waves E^xp (-iu0t+ 
+ikxR) and E2exp (-ico0t+ik2R) with k2=-kx this phase does not depend on spatial 
coordinates in a nonlinear medium. It is determined by the position of the 
mirror by which wave E2 is obtained from wave Ex, and it changes by 2w0At when 
the point of the initial time reading is shifted by At. When a wave U^ propa- 
gates from a WFR mirror to a conventional mirror and back, it "picks up a 
phase factor exp (2ik<,L), where L is the length of the resonator. When we 
examine the modes of a conventional resonator, we limit ourselves to one pass 
through the resonator, and we equate the resulting field U^ with the initial 
field U3. We cannot do this here because field U„ has another frequency 
(10^0)3), and closure requires one more pass through the resonator.  When wave 
U^ is reflected from a WFR mirror, it transforms into wave U3-[Ullexp(2ik,lL)]*e 1 
with frequency u>3.  Wave U3 passes to the conventional mirror and back, 
acquiring a phase run-on 2ik3L. Finally, after two complete passes through 
the resonator we have 

Ul = U3exp{2ik3L) = U3exp[2i(k3 — ki)L]' (1) 

that is, the field has automatically restored its frequency <D3 and acquired 
a phase shift 2(k3-kJL=2(W3-UOL/C=4(U>3-U>0)L/C. We emphasize that this phase 
shift is independent of the phase of the complex coefficient of WFR reflection. 

The mode of the resonator is a self-reproducing field. The self-reproduction 
condition in conventional resonators isolates discrete mode frequencies 

2 Lco/c=2 Jtm+O (p, q), (2) 

where $(p,q) is the phase depending on transverse indices p,q to which fully 
defined transverse configurations of modes Mpq(r,z) correspond. Thus in a 
conventional resonator, the intermodal interval for a given transverse index 
equals ü)m+1-o)m=2-rr/T, where T=2L/c is the time of complete passage through the 
resonator, and the absolute position of the frequencies is determined by 
resonator length L: When it changes, all frequencies are shifted by 
Au)m=-a)mAL/L. 

In accordance with (1), the self-reproduction condition for a resonator with 
a WFR mirror has the form 

4 L (0)3—to0)/c=2 nn, (3) 

where n is a whole number. First of all there are modes with n^O consisting 
of two-frequency fields ü)3n=ü)0+irnc/2L, o)4n=ü)0-TOc/2L, where n>0 and n<0 
differ only in relation to which field is called U3 and which is called U^ 
The intervals between successive frequencies equal ü)n+1-U)n=2ir/2T, where 2T- 
=4L/c is the time of two complete passages through the resonator; these 
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intervals are half  that of   a conventional resonator.* It is very 
important that the absolute frequency of these modes be determined chiefly 
by the frequency OJ0 of the reference waves, and that it is insensitive to 
small changes in resonator length:  Au)n=(u)0-ü)n)AL/L, which is (u)0-ton)/w0~10

5 

times less than for a conventional resonator. 

Let us assume that the transverse structures of fields U3(r) and U\(r) of 
a two-frequency mode (a mode for which n^O) are identical.  Then owing to 
interference between fields U3(r) and U^(r) the temporal course of intensity 
at the resonator exit has the form / (/)co[l+cos (2 n ntlT)].    When n=l, this 
corresponds to shifting of the intensity maximum through the resonator from 
the WFR mirror to the exit mirror and back at the speed of light. 

It is noteworthy that when both mirrors (conventional and WFR) are sufficient- 
ly wide, and no losses depending on the transverse structure of the field 
occur, fields U3(r) and U^r) have a completely arbitrary shape satisfying 
only the conditions which associate waves striking and reflected from the 
WFR mirror: 

.^,„„<r) f/Wm-"'; (/.,,,,,,<r)- U'tmAr)(.'"'■ (4) 

This assertion is valid in the case where the WFR resonator contains optical 
heterogeneities.  In the approximation in which the laws of diffractional 
change of transverse structure may be said to be identical within the limits 
of a resonator in relation to fields at frequencies oi>3 and Wi,, relationship 
(4) would be satisfied throughout the entire volume as well. 

Modes with n=0 must be examined separately.  Irrespective of the transverse 
structure and length of the resonator L, they all have the same frequency 
a) coinciding with the frequency ü>0 of the reference waves. In the confluent 
case n=0, fields U3(R) and U„(R) introduced for the case n^O are physically 
indistinguishable, U3(R)=U,t(R)=U(R). Then condition (4) transforms into 
U(R)=U*(R)ei<J), which gives us U(R)=|U(R)le1*'2, where <J) is a constant equal 
to the phase of the coefficient of WFR reflection.  Recalling in the paraxial 
approximation U(R)=U+(r,z) exp (ikz)+U_(r,z) exp (-ikz), we get 

U(R)-   |(y.,(r,?)|e"fA'cos(A7--if'/2). (5) 

The fact that the field of the mode has the same phase throughout the entire 
volume--that is, that this mode is a standing wave (with a heterogeneous 
transverse and longitudinal amplitude distribution)--is a natural consequence 
of determining the resonator mode.  It also holds in relation to nonconfluent 
modes of a conventional resonator without losses and active elements.  In 
a conventional resonator, however, the structure of the field of this mode 

*Because n>0 and n<0 are indistinguishable, the total number of field 
oscillators per unit frequency interval would be the same as for a 
conventional resonator. 
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U+(r,z) is determined rigidly by the set of transverse and longitudinal 
indices, while the total phase of the field is arbitrary (because it depends 
explicitly on the point of the initial time reading).  In contrast to this, 
in a WFR resonator without aperture limitations the transverse structure of 
the standing wave is arbitrary, inasmuch as a WFR mirror automatically adds 
to any configuration U+(r,z) a reversed configuration. However, it is 
important that the absolute phase of light oscillations at frequency OO=OJ0 
of this field is rigidly imposed by phase $  determined by the phase of the 
reference wave. This circumstance would be understood easily by anyone 
familiar with correctly matching the phase of oscillations of a swing in the 
course of its parametric swinging. 

Note also that as is the case with a nonconfluent mode of a conventional 
resonator, for a mode with n=0 in a WFR resonator the surface of the wave- 
front at the conventional mirror coincides with the mirror surface. 
Generally speaking this property does not hold for modes of resonators with 
noticeable transversely heterogeneous losses (both conventional and WFR 
resonators) as well as for modes with n^O of ideal WFR resonators. 

The effectiveness of reflection in the WFR-FWM case drops as frequency ü>3 
deviates from the general frequency w0 of the reference waves. As we know 
(see for example [7]), the spectrum interval |OJ3-U>0| of effective reflection, 
determined for noninertial nonlinearity by the synchronism condition, is 
|u)3-u)0 | ~2ITC/L' , where L' is the thickness of the nonlinear medium.  Thus the 
longitudinal index n of two-frequency modes of a WFR resonator is limited 
by the relationship |n|S4L/L'.  Moreover if we account for the dependence 
of the phase <j) of the WFR reflector on frequency w3, then the effective length 
of the resonator in (3) would be Lag,=L+0.5L'. 

If we are concerned with isolating a single longitudinal mode, the most 
convenient method of selection would apparently be to use inertial FWM non- 
linearity with relaxation time x>I,3$/c.  In this case for practical purposes 
nonconfluent modes with n^O are not excited due to the low Q-factor of the 
resonator in relation to them.  In fact, for radiation for which the frequency 
is shifted relative to the frequency of reference waves to a greater amount 
than the reciprocal of the relaxation time of FWM nonlinearity, the coeffi- 
cient of reflection of a WFR mirror is much less than the coefficient of 
reflection for a confluent mode with n=0 at frequency ü>0. 

2.2.  Integral Equation Method for Finding the Modes of a WFR Mirror 
Laser 

Two approaches to studying the mode structure of resonators have now evolved. 
In the first, the resonator's modes are found as the solution to the corre- 
sponding integral equation, while in the second a ray matrix method is used. 
Let us begin by discussing the first of them [2,4,12-18]. 

Let the distance between a WFR mirror and a flat mirror be equal to L. 

For an "empty" resonator with square mirrors, it would be sufficient to 
examine just one-dimensional integral relationships because the transverse 
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variables x and y separate. The distribution of the field of the wave strik- 
ing the WFR mirror in relation to the amplitude coordinate U(x) is associated 
with the corresponding distribution of field U^x') on the flat exit mirror 
by the relationship 

f/1(x') = C j* H(x,x')U*(x)dx, (6) 

where H (x, jr')= (i/LK)1/2 exp I—ik (x—x'fl2L\  --the transfer function of free space; 
k=2ir/A--wave number; A--wavelength; 2ax--width of the WFR mirror; 2a2--width 
of the exit mirror; C--complex constant depending on the process as a result 
of which wavefront reversal occurs. 

Following one complete passage, intrinsic modes must self-reproduce.  Con- 
sidering this condition, we get the following nonlinear integral equation 
for the complex amplitude of the field of a wave striking a WFR mirror: 

"i ai 
yV (xj = C  j dx'  j H (xlt x') H (xt, x') U* (*,) dx1 = KU*. (7) 

where y is the eigenvalue.  It is not difficult to see [9] 
that if the WFR mirror is not limited in dimensions (a^), then the integral 
equation for field U2(x') at the exit mirror transforms with accuracy to the 
complex conjugation into the identity (including in the presence of arbitrary 
phase distortions--that is, these distortions may be disregarded because they 
are compensated) 

yU2[x')e=Ul[x'). (8) 

With an accuracy to any complex factor, the solution to (8) is any real 
function--that is, a field having a flat front given within the interval 
-a2, a2.  The modulus of the eigenvalue (if the WFR mirror does not contribute 
losses, |C|=1) is equal to unity in this case--that is, losses are absent. 
Consequently a resonator with a WFR mirror with infinite aperture does not 
exhibit selectivity in relation to the field structure.  But if the aperture 
of the WFR mirror is limited, then due to diffraction, wavefront reversal 
would be partial (and consequently when heterogeneities exist in the medium's 
index of refraction, compensation of these heterogeneities would be 
incomplete).  Appearance of a discrete spectrum of nonconfluent transverse 
modes would be a consequence of this. 

Although resonators with a WFR mirror contain nonlinear elements, the problem 
of calculating the field within them may be reduced to finding solutions to 
a linear integral equation.  In fact, writing the complexly conjugated analogue 
for equation (7) and acting upon the left and right sides of the latter by 
integral operator K, we get 
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yU (x2) = KK*U = KU = | C |2  J dx' j dx"   j dx'" j  H(xltx')x 
—flj —a, —o2 —a, 

X // (x", x') H* (x", x"') H* (x2, x"') U (xj dxu y = | y |2. (9) 

In other words two-time reflection from a WFR mirror compensates for non- 
linearity associated with the complex conjugation operation. Variable |y|2 

characterizes weakening of the intensity of the given mode in the course of 
one complete passage through the resonator. The linear integral operator K 
is a fully continuous Hermitian operator, owing to which the eigenvalues of 
equation (9) are real, while the eigenfunctions corresponding to different 
eigenvalues are orthogonal, and an orthonormalized basis may be formed from 
them in the interval -alt  ax. When a2=°°, equation (9) acquires the form 

yU (A-,) •--: '"IT (AT)* j' exP f — '" (x*—xl)/2\L] X 
-0, 

\ 2 sin IJTöJ (A-, — x2)/KL] \n (A-, —A',)]-1 U (A,) dxv (10) 

An integral equation of the form (10) is widely used in the theory of optical 
resonators with conventional mirrors, and it possesses exact analytical 
solutions: 

U„ (x) - [aj |/XZ)-Vi exp (inx*:2KL) S0„ (B, x/aj, 

where Son(B, x/a^—normalized elongated angular spheroidal functions; 
N=af/AL--Fresnel number; B=TTN.  At large B, 

S0„(B,   A-/fl])~exp I—ß (xlaifl2\ //„(ß1/2 x/aj, 

where Hn(y) are Hermitian-Gaussian polynomials. 

Thus at large values of the Fresnel number N, eigenfunction U0(x) represents 
a Gaussian beam, the half-width of which at a WFR mirror is W=(2AL/TT)1'2. 

Note that the behavior of the field at the mirrors of a symmetrical confocal 
resonator with length 2L is consistent to an accuracy of constants with 
equation (10).  In this sense the modes in a resonator with a WFR mirror are 
similar to the modes of a certain confocal resonator.  For example the equiv- 
lent of a resonator formed by WFR and flat mirrors would be a confocal 
resonator with length twice exceeding the length of the WFR resonator, and 
with the diaphragm, the total dimension of which is 2ax, positioned at its 
center. 

The integral equation method was used in [2] to study the influence of lens 
and wedge aberrations, aperture dimensions and displacements of mirror 
centers on the behavior of the modes.  The integral equation for a resonator 
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formed out of two WFR mirrors was solved in [19,20]. Methods of designing 
conventional resonators equivalent to resonators made from a WFR mirror and 
a concave or a convex mirror are described in [19]. 

2.3. Transverse Mode Structure in a Resonator with a Self-Pumping WFR 
Mirror 

Let us examine the behavior of modes in a resonator with a self-pumping WFR 
mirror (SWFR mirror, see Figure 2).  It will be demonstrated below (see also 
[21]) that presence of nonzero curvature of the wavefront of reference waves 
elicits phase modulation of the reversed wave, and under certain conditions 
it leads to the appearance of modes in the resonator typical of an unstable 
resonator. This behavior makes possible good selection of modes with respect 
to losses, which leads to rapid establishment of stable lasing conditions. 
This is very important to laser systems in which a high gain is required, 
as is true with a wavefront reversal system. Therefore we will assume that 
in order to permit control of the curvature of the wavefront of the reference 
waves, a lens with focal length f is positioned before the WFR mirror in the 
feedback arm.   As a result of four-wave mixing, field Ux(x) striking the 
WFR mirror is transformed into UOTP=U2(X)U*(X) upon reflection from it, where 
U(x) is the complex spatial amplitude of the reference wave. We will assume 
that the exit mirror has unlimited transverse dimensions and that a limiting 
diaphragm is positioned in front of the WFR mirror. This diaphragm will be 
described as a Gaussian spatial filter with effective dimension a. 

Considering all of the remarks made above, the integral equation used to 
determine the modes in a resonator with an SWFR mirror would have the form 

A'2 \ 

yU[x3):-  j U\ (A-,,) [ku{x]))2exp[~i4fx'-'^) x 

where 1/,(A-8)--- f..{/(Jtjjexp^ — i5771A'i~x*\2)dxi   and Mx^, U(x)—the field at 
— 00 

the WFR and exit mirrors respectively; K--operator describing transformation 
of the field upon passage of the reference wave along the optical path between 
the WFR and exit mirrors; KU(x)--amplitude-phase distribution of the reference 
wave at the WFR mirror; L^-resonator length. 

Before going on to solving integral equation (11), we need to point out some 
of its typical features. We can immediately note that integral equation (11), 
which describes the behavior of oscillations in a resonator with an SWFR 
mirror, belongs to a completely new class of integral equations, ones which 
had not been encountered previously in research on conventional resonators 
and on WFR resonators with an external pumping source [2-6].  Integral 
equation (11) is significantly more nonlinear than the equation for the modes 
of a resonator with a WFR mirror pumped by an external source, and what is 
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most important, it cannot be reduced to a linear equation, as in the latter 
case  This fact is the product of the circumstance that the complex co- 
efficient of reflection of a WFR mirror is determined by the square of the 
amplitude-phase distribution of the beam subject to reversal itself. 

Note also that inasmuch as equation (11) is nonlinear, modes are defined as 
self-repeating solutions, and they are no longer a complete system of ortho- 
gonal functions in relation to which any solution to the equation breaks down, 
Is in the case for example with linear integral equations. Diffraction 
losses of the resonator under consideration here also do not correspond to 
the commonly accepted definition of this concept. In fact, the coefficient 
of reflection of a WFR mirror is a function of intensity, and therefore losses 
would depend not only on the form of the fundamental solution. 

To calculate the field in a resonator with a self-pumping WFR mirror, we need 
to know the form of operator K in (11). Without loss of generality, we can 
assume for the preliminary analysis that K is a fundamental operator Unis 
situation occurs when the optical system in the feedback arm  creates an 
unmagnified image of the exit mirror at the WFR mirror). Exact solutions 
to integral equation (11) are unknown in analytical form even in relation 
to such a simple operator K. However, it may be assumed that there exists 
a solution in the form of a Gaussian beam U(x)=exp(-ax2+ißx2). Substituting 
a solution of this form into integral equation (11), we get a system of third- 
order algebraic equations, from which we can determine the Gaussian beam 
parameters a and ß: 

(a2+$2)(A +2a)—B2A +2BCa—2ß2a—4paß=0, 
(a2+ß2)(C—2ß)—B2C—4Ba2+2BAa=0, (12) 

where A = \/a2; B=kl2Li, C=k/2f;  fe—wave number. 

The order of this equation system may be decreased in the case of a very wide 
WFR mirror. Ignoring terms containing A, we find the solution to equation 
system (12): 

p,-(2ß Cf:2{2C-   5B),  a    \2\iB\I^BC-frVi~ (13) 

and a=0, which is an incidental solution inasmuch as in this case we could 
not ignore A in (12). Ignoring A in comparison with a means that the beam 
subject to reversal and having the effective dimension W=(2/a) '  acts as 
the diaphragm at the WFR mirror. 

Varying the curvature of the wavefront of the reference waves by adjusting 
the focal length f of the lens, as in the case of a resonator with a WFR 
mirror having an external pumping source [24], we can control the modal 
volume.  In fact, it follows from (13) that as the optical strength of the 
lens increases (as f decreases), the dimension of the beam at the exit mirror 
increases (o*0). However, this increase cannot occur without limit, inasmuch 
as given comparable dimensions of the diaphragm and the beam at the exit 
mirror, we need to account for diffraction at the diaphragm (we cannot 
ignore A). 
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To describe the behavior of modes in the case where the dimensions of the 
beam at the exit mirror are large (a-K)), we can use the method of successive 
approximations, representing ß in the form ß=ß0+e, where ß0 is the zero 
approximation and e is a small correction factor. Considering that condition 
a<A is satisfied when OB, we get ß0=±B from (12) as the zero approximation. 
Then equation system (12) takes the form 

(a2+e2+ß2±2eß)(,4+2a)—B2A+2BCa— 2B2a+4aB(z—B)   0; 
(a»+e»-f B2 ± 2eB)(C+2E—2B)—B2C—'iBa2—2BA a ■--- 0. (14) 

Leaving in this equation system those terms that are not larger than the first 
order of smallness with respect to e and a and solving the resulting system, 
we find 

B=B*/C;  a-=eA/C=±BiA/C*=±(f/L)*A. (15) 

Because a must be positive, ß0=
-B is a positive root. Note that at very large 

C(f-»0) the dimension of the beam W=(2/a)1'2 in a resonator with a WFR mirror 
with external pumping exhibits the same dependence on f as does (15). 

Let us find the highest modes as the self-reproducing solution to (11) in 
the form 

Un(x)=-A„(x)exp(—aut*+i$x*), (16) 

where An(x) is an n-th degree polynomial, n=0,l,2.... 

Let us simplify the form of function U2(x) in (11) by considering only the 
diaphragm factor (the exponential term) and ignoring amplitude modulation 
(assuming A£(x)=const) contributed by reference waves.  Given this approxima- 
tion of U2(x), equation (11) is similar in its properties to the equation 
for a resonator with a WFR mirror with an external_pumping source, and a non- 
zero solution in the form of (16) with An(x)=Hn(x/a), where Hn(y) are 
Hermitian polynomials, is  permitted. 

When the exact function U2(x) is substituted in the right side of (11), 
following integration we get the function 

A3n(x)exp( — qx 2)~ \2Hsi(i- 
L/=i 

Bpx) bj exp (—ax- -j- ißx2), (17) 

where p=[2a—2iß+tC+,4+ß2/(a+/ß—iB)]-1/2. 

Considering that the exponential term in (17) "cuts" function Hj(y) when 
x/a<l, at large a (when |pB|«l) the right sides of integral equation (11) 
coincide approximately when the approximate and exact functions U2(xJ are 
substituted in it, and the solution to (11) may be given in the form (16). 
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The perturbation method can be used to obtain an exact expression for the 
self-reproducing solution to (11). 

In concluding this section, we will consider the question of the eigenfrequencies 
of a resonator with an SWFR mirror. Let the wave phase at the exit mirror 
be equal to <|>c. The wave phase in the case of a single passage through the 
resonator from the exit mirror to the SWFR mirror equals qy ^Lj+^i+^V 
where $x is the phase depending on transverse structure of the beam. When 
reflection occurs from the SWFR mirror, the phase becomes equal to 
<p0T=—q>„+q>rf-<fe . where ^ is the phase of the reference waves, in which 
case ifi&<h==<Pc+kL*'      The total phase run-on in one passage is determined 
by the expression qv-qv+^i+^i^qv  For self-reproduction of the field 
to occur, the resultant phase must be equal to the initial phase $c with an 
accuracy within a whole number 2 IT, from which we get 

2nmtt2kL2. (18) 

where L2 is the distance traveled by the reference wave along the feedback 
circuit from the exit mirror to the SWFR mirror. It follows from (18) that 
the spectrum of eigenfrequencies of this resonator is the same as for a 
conventional resonator with length L2, which makes resonators with an SWFR 
mirror significantly different from resonators with a WFR mirror with an 
external pumping source. 

2.4.  Effect of Different Kinds of Distortions Contributed by a WFR 
Mirror on the Behavior of Modes in a Resonator.  The Matrix Method 
of Calculating Mode Structure 

It was established [2,14.22] in an examination of a resonator with a WFR 
mirror having limited transverse dimensions that amplitude distortions 
associated with the finite dimensions of the WFR mirror are the cause of 
appearance of nonconfluent modes.  The modes in such a resonator are similar 
in their properties to modes typical of a confocal, generally asymmetrical, 
resonator. 

The problem of finding the modes of ring resonators with WFR mirrors was 
examined in [23], and it was demonstrated that it reduces to the problem of 
finding the modes of a certain equivalent resonator with conventional 
mirrors.  Following the commonly accepted practice, equivalence of two 
resonators is defined as equivalence of the integral equations describing 
the modes in these resonators.  In the case where a wave propagating from 
the second mirror to the first passes through the resonator not in the 
reverse direction (see [23] and Figure 12 below), a ring resonator with WFR 
mirrors may be unstable (the transverse dimensions of the beam in an unstable 
resonator increase with each pass; however, this expansion is limited by the 
finite dimensions of the mirrors). Thus a resonator with an FWM mirror in 
which the frequency of the wave subject to reversal is not consistent with 
the frequency of the reference waves was studied in [8]. If the frequency 
of a Gaussian beam striking an FWM mirror is w+6 and the frequency of the 
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reference waves is u), then the frequency of the reversed beam becomes equal 
to (JJ-6, and the radius of curvature of the wavefront increases by a factor 
of (1-6/U))/(1+6/OJ). In this case the reflected beam, which has a frequency 
different from that of the incident beam, propagates in accordance with other 
laws of diffraction. Owing to this, modes typical of an unstable resonator 
appear. 

It is significant that in all of the cases examined here, partial wavefront 
reversal of light associated with introduction of distortions of varying 
nature into the fields within the resonator by WFR mirrors is the cause of 
appearance of nonconfluent modes; in the absence of distortions, modes do 
not appear in the commonly accepted usage of this concept. 

In the general case we also need to take account of the possibility of phase 
distortions introduced by a WFR mirror. As an example in the case of WFR 
light, in FWM conditions phase distortions may be caused by nonzero curvature 
of the fronts of the pumping waves. 

Thus various factors responsible for partial wavefront reversal affect forma- 
tion of modes in a resonator with a WFR mirror differently. At the same time 
in real resonators, as a rule the revealed factors may be present simultaneous- 
ly.  In this connection the need arises for studying the joint influence of 
different kinds of distortions contributed by a WFR mirror to formation of 
resonator modes.  This sort of research is conducted in its entirety in [24] 
in relation to a laser with external pumping of a WFR mirror, encountered 
most frequently in experiments (see Figure 1).  Here we will describe the 
general approach and examine two particular cases in greater detail. 

We will assume that the WFR mirror under consideration here works as an ideal 
mirror with an effective lens with focal length f positioned right next to 
it. This lens affects only the reversed and not the incident wave.  In 
reality such phase modulation of the reversed beam is attained if the 
reference waves are spherical and if their curvature differs. We will also 
assume that the WFR mirror also contributes amplitude distortions which can 
be described conveniently in the form of a Gaussian spatial filter with 
transverse dimension Wa. This simplified scheme contains all of the charac- 
teristics inherent to resonators with WFR mirrors effecting partial wavefront 
reversal, and it permits us to reveal the behavioral features of modes in 
such resonators. 

To determine the structure of fields in a resonator with a WFR mirror we can 
use integral relationships similar to (8)-(10); however, the results are most 
comprehensible when the matrix approach is employed [8,25].  In this approach, 
transformation of a geometric-optic ray by an optical system is examined in 
the paraxial approximation.  The ray may be characterized by two transverse 
vectors—distance from axis r=(x,y), and slope in relation to axis 9=(9x,0y). 
In the paraxial approximation, propagation of a ray over distance L along 
the axis of the resonator corresponds to the transformation r2=r1+L01, 92=6i. 
This may be represented in the form of multiplication of vector (r, 6) by 
the matrix: 
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A B' 
C D 
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A B' 
C D = 

1 V 
0   1 

Refraction in a thin convergent lens with focal length f may also be described 

in matrix form, in which case we have 

\A B~\ \        l  °1 
c D_ .-!//  1.1 

It is noteworthy that for elements with a parabolic profile to which this 
approach is applicable, examination of the geometric-optic problem allows 

us to provide an exact description of diffraction. 

The basic mode of a resonator exp(-ikr[/2q) is characterized by the complex 
radius of curvature q, which is subordinated to distribution laws contained 
in the matrix relationships, and which is determined by the equation l/q= 
=l/R-iA/irW2, where R is the radius of curvature of the wavefront, W is the 

dimension of the beam and X  is wavelength. 

Let us select the reference plane near a flat mirror and follow a Gaussian 
beam as it propagates to the WFR mirror and back.  In this case passage of 
the beam through several optical elements and gaps between them is described 
by the product of the corresponding matrixes in the appropriate sequence 
T=TnTn+1...TzTx. Using formal matrix language, we can represent the action 
of our WFR mirror as a matrix T0ß$ equal to the product of four matrixes: 

ou$ 

1 01 n     o   I r      l on ■   l 

0 — 1 
,+6/co 
1 — 6/co 

-i// i »7. 

0" 
(19) 

The first matrix on the left in this product describes ideal reversal [2] 
corresponding to reversal of the trajectory of the rays, while the second 
describes distortions caused by presence of a frequency shift 6 between 
pumping waves with frequency w and the wave striking the WFR mirror [8]. 
The third and fourth matrixes correspondingly describe the phase (lens) and 
amplitude (Gaussian spatial filter) distortions contributed by the WFR mirror. 

Parameter q at the exit from the WFR mirror is associated with the entrance 

parameter by the relationship 

<7m.ix   ' omj^B 
(20) 

where the action of operator $QB$» which corresponds to matrix T0ß$ with 
elements A,B,C,D, on parameter q|x involves fulfillment of the operation 

T0B$q=(Aq|x+B)/(Cq|x+D)- 
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Note that TQB$ and qgx are conjugated in the case of reflection from a WFR 
mirror, in distinction from the situation with conventional mirrors, where 
the parameters of input radiation are not conjugated. Return propagation 
of the beam through free space is described by matrix TL. 

To determine the modes (eigenvalues q), we need to require that the complex 
radius of curvature of the Gaussian beam self-reproduces after one complete 
passage. This condition may be written in the form 

q=f*q*, (21) 
where 

T=TLT0^TL. (22) 

However, it would be simpler to find eigenvalues q by writing the self- 
congruent equation for two complete passages.  In this case we must keep in 
mind that to determine the matrix describing two passages, we cannot simply 
take the square of the matrix for one complete passage (as in the case of 
matrixes with real elements). And because after each reflection from the 
WFR mirror wavefront reversal occurs, the equation for two complete passages 
assumes the form 

q^t'fq^iAtg+BtyiCtf+Di). (23) 

Solving this equation relative to 1/q, we get 

1   Z>,— A 
q  —     2B3 

± Dt-At\* ,c. 
B2   ) 

(24) 

Substituting (22), (23) into (24), we can determine the characteristic para- 
meters of resonator modes in all cases of interest to us. 

As an example we will examine how phase distortions contributed by a WFR 
mirror with limited transverse dimensions affect the parameters of resonator 
modes.  Limitation of the aperture of the WFR mirror leads to the existence 
of modes typical of stable resonators [2,4,14], while phase distortions, as 
it would be easy to show, tend to shift the resonator into its unstable range. 
To reveal the joint influence of these factors, substituting 6=0 in (19), 
we get the following expressions from (24) for the curvature of the wavefront 
and the dimension of the spot of the Gaussian beam on a flat mirror: 

I _ - .v (A-2 -i- fr2)± \(x* + fe2)2 + (x* + fe2))'/g (*2 + 6!i)       (25) 
R L\(x*-\ fc2)2-j-62] ' 

W* = Wl — (*2 + *2)2 + *2. rr-. (26) 

where    ^-(U/n)1'2;  x=Llf=L%JWa\ b=- k Lin Wl - 0aL/n Wa;     0,.= WJf  —geometric 
divergence caused by phase distortions;   Qn~k/Wa   --divergence of the beam 
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owing to diffraction at the aperture of the WFR mirror. Let us examine how 
beam dimensions change at a flat mirror depending on parameter a   s'h   n(),.''0;i~ 
~l/f in the case of a large fixed Fresnel number A' \\"',:I. X> 1 (/>•■ 1).  As 
a varies from 0 to 1, the dimension of the beam may be approximated by the 
function 

IF- lV'|;|a | (1| a')' '| '~W'ö(l--a). (27) 

It follows from this expression that as long as the geometric divergence 
contributed by the WFR mirror remains less than or comparable to diffractional 
divergence (|a|Sl), the dimension of the beam varies insignificantly, 
increasing (f<0) or decreasing (f>0) in comparison with the beam dimension 
in absence of phase distortions.  As geometric divergence increases further 

(|a|»l) 

'     W*-   Wl\a-:r\a\(]\.]/2*')\ ':    [■ ^^awhenaX); 
I W'h2 |a|whena<0. 

Thus in the presence of strong phase distortions in the reversal operations, 
the beam dimension increases when f<0; however when f>0 the beam dimension 
decreases as long as ab=L/f<l.  This result is a theoretical confirmation 
of an experimental fact: When phase distortions in reversal operations are 
not very strong (ab<l), diffraction at the aperture of the WFR mirror "holds" 
the resonator's mode in its stable range, and the role of phase distortions 
reduces only to deformation of these modes. Therefore the results cited in 
[2,4,14] quite correctly describe the behavior of modes in the case of 
rather small but finite phase distortions.  Given satisfaction of the 
condition ctb=L/f>l, W2 can no longer be approximated by expression (27); in 
this case the approximate expression for W2 assumes the form 

W-^-Wlo.2b^WlL2lf. (29) 

In similar fashion beam dimensions are transformed in unstable resonators 
(in which beam dimensions are directly proportional to mirror dimensions, 
and in our case to the dimension Wa of the WFR mirror).  However, we empha- 
size once again that this condition is realized in experiments only when 
a phase addition is specially introduced into the phase front of the reversed 
wave, which may be achieved in the case of four-wave interaction by changing 
the curvature of the wavefronts of the reference waves. 

Distortions contributed by a WFR mirror in the case of a frequency shift 
arising with four-wave interaction require special examination.  These 
distortions increase the radius of curvature of the wavefront of a Gaussian 
beam reflected from a WFR mirror by a factor of (1-6/üJ)/(1+6/ü)) [8].  But 
change in frequency in the case of four-wave mixing places this form of 
distortions in a special position, inasmuch as not one of the frequency 
components of the field within the resonator can self-reproduce after one 
complete passage (that is, these frequency components cannot be defined as 
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modes in the commonly accepted usage). Nonetheless, if in the case under 
consideration we define a mode [8] as a superposition of two frequency 

components 

E{rx, 0=£i('-i)
exP[l'(ö)+8)0+-E2(ra)exp[i((o-6)^. (30) 

in which the spatial distribution of one of the components coincides with 
the spatial distribution of the other after one complete passage, then such 
a mode may self-reproduce after one complete passage.  It follows from this 
definition of a two-frequency mode that only one of two functions E^Uj.) is 
the variable function in (30), and that consequently for Gaussian beams, only 
one of parameters q# (£=1,2) is variable.  It would be easy to show that the 
eigenvalue of the variable parameter q of a two-frequency mode in the case 
of one passage coincides with the eigenvalue q of a one-frequency mode in 
the case of two complete passages, and that it is determined from the equation 

q = T. tT+tq, (31). 

where in the first reflection from the WFR mirror the wave changes its 
frequency from u>+6 to u-6, and at the second reflection it changes from 
ü)-6 to ü)+Ö.  In this case the second matrix in expression (19), which 

determines T+g, has the form 

M ±6 ' 

1        0 
I ±6/w 

0 
1=F6/<O 

(32). 

Let us clarify how much the parameters of a Gaussian beam change when 
reflection occurs from a WFR mirror with limited transverse dimensions, 
assuming that the frequency shift is taken into account. Substituting (32) 

into (19) and assuming f=°° in the latter, we find 

1    (Y --I- 2 b — 2 i) I — y± (y2 -|- '6 + 8 y b + 1C ft2 - 4 y2 b* — 8 i y)'7'] 

where 

9l.2 

b--=\LlnWl;y~(bl<a)lb. 

2L|(y-f 26)H 4] , (33> 

At small 6/u (in real conditions, 6/ü)~1CT
5
) and at large Fresnel numbers 

(b«l), following expansion of relationship (33) we get 

\wi jvi    "^ ivi»1- 

This result shows that in the presence of a frequency shift, the distortions 
contributed by a WFR mirror only deform the mode in the resonator. 
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Thus amplitude distortions associated with limitation of the transverse 
dimensions of the WFR mirror lead in most practically utilized systems to 
appearance of modes typical of a stable resonator, and in this case the role 
of phase distortions and the frequency shift reduce to deformation of the 
modes. Special measures may be taken (for example skewing the phase fronts 
of the reference waves in the case of four-wave mixing) to control the 
transverse dimensions of the modes, and consequently their volume [24]. 

2.5. Acquisition of the Mode with the Lowest Transverse Index 

If there are no limiting diaphragms in the resonator (a conventional or WFR 
resonator) and if the mirrors are not limited in their transverse coordinates, 
many modes with different transverse indices are generated, and the divergence 
of the generated radiation may be arbitrary. For practical purposes it would 
be interesting to achieve lasing in Gaussian mode with a zero 
transverse index consistent with the diffracted orientation of radiation. 
In conventional resonators there are two ways of solving this problem: using 
unstable resonators, where losses are large for the zero mode as well, but 
where they grow especially quickly at the higher transverse modes (consider- 
able overall amplification during a passage is required if the generation 
threshold is to be exceeded), and use of a stable resonator with a diaphragm 
which readily passes the zero mode and which contributes great losses to the 
higher transverse modes for which the transverse dimension of intensity 
localization is large (only such systems are usuable in relation to laser 
media with low amplification per passage). The diaphragm dimension required 
for this purpose Wa corresponds to the situation where the Fresnel number 
Wl/h Ls$,     calculated by way of the effective length of the resonator L3$, 
must be on the order of unity. Unfortunately if the elements of the resonator 
contain optical heterogeneities, then the dimension of the diaphragm must 
be made even smaller, which reduces the Q factor and the energy recovery. 

When phase (nonabsorbing) optical heterogeneities are present, a WFR mirror 
having sufficiently large transverse dimensions, and thus one which reverses 
all radiation striking it, operates just as ideally as in the case where 
heterogeneities are absent.  In other words from the standpoint of the 
transverse structure of the fields, a WFR mirror and a heterogeneous medium 
may be substituted by just the WFR mirror. 

Considering the above, we can examine a resonator similar to that shown in 
Figure 1. In this case we assume that the exit mirror has a radius of curva- 
ture R0 and that there are no optical heterogeneities in the gap between the 
diaphragm and this mirror. Moreover we will limit our examination to modes 
with frequency u=u0--that is, modes with longitudinal index n=0. The deriva- 
tions related to two-frequency modes--that is, for modes with n^0--are 
similar. 

If as the reference plane we adopt a plane close to the exit mirror and 
calculate at this mirror the component of the field emerging from the 
resonator, then the operation of complete passage through the resonator may 
be described as 
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T-- 
1 L 
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1        0 

nW: 

1 

0 i A 

n w; 

1  /,' 

0 1 

l—2imL(\—2L/R0)    —2imL* 
2//?0 —2/m(l—2L//?0)   1— 2ifflL 

1  0 

(34) 

Here R0--radius of curvature of the exit mirror; Wa--transverse dimension of 
the Gaussian diaphragm; m=2/kW2.  Equating curvature q after a complete passage 
to the initial curvature, we get the equation q=(Aq*+B)/(Cq*+D), where A,B,C, 
D are elements of matrix T in (34).  We write the expression for the real 
radius of curvature R of the wavefront of the mode and the expression for 
the constriction of mode W at the exit mirror: 

R=L a + W = (l-<z)|l-q| 

N = 1/2 m L=nWl/2 X L;a = L/R0. 

LA(iV2 + (l-a)!!),/* 
jiA'jl—a| 

'/= 
; (35) 

Let us discuss the results for the case of a flat exit mirror (R0-*0, ctM)). 
In this case R = LVl+Na,  W = [XL VN*+ \/nN)V\  where N is the Fresnel number 
of the resonator. We fix the distance L from the exit mirror to the diaphragm 
and vary Wa or, what is the same thing, the Fresnel number N. 

At small N«l--that is, at a small diaphragm radius Wa, we have R=L, 
W ä5 [kL VN2 + 1/nN)Vi  --that is, a divergent Gaussian beam with its constriction 
in the vicinity of the diaphragm emerges from the resonator.  Following 
reflection from a flat mirror, this wave approaches a diaphragm with radius 
of curvature R'=2L and beam dimension W'=2W. When N«l, the resonator 
possesses a very low Q-factor: A large part of the beam is cut off by the 
diaphragm, inasmuch as W'»Wa.  For lower modes the proportion of energy 
passing through the diaphragm in the case of complete passage through the 
resonator is [1+2W 2/Wa]

_1 while for Nil  this proportion equals ~N2/A«1. 
Losses would be even greater for Hermitian-Gaussian modes with transverse 
indices s, p; the dimension of their localization on the diaphragm is on the 
order of W^p~W' (s+p+1)

1/2 . 

In the case of a large Fresnel number, N>>1, we have R=LN=irWa/2X, W=(AL/ir)
1'2. 

In this case the lowest mode corresponds to a Gaussian beam with an almost 
flat wavefront, and the structure of the beam is practically identical 
throughout its entire volume from the diaphragm to the exit mirror.  In this 
case the losses are not large:  For a Hermitian-Gaussian mode with indices 
s, p, the proportion of energy passing through the diaphragm in the case of 
a complete passage equals 

l—2(s + p+l)LX/nWl = l — (s + p + l)IN. (36) 

40 



Unfortunately when N»l selection of the highest transverse modes 
weakens. 

The structure of the modes, their Q-factor and selection are approximately 
the same in relation to different N for a resonator with a diaphragm and a 
WFR mirror, examined above, and for resonators with conventional mirrors 
and diaphragms at the same N but with the significant condition that there 
are no optical heterogeneities in the conventional resonator. One merit of 
a resonator with a WFR mirror is insensitivity to that part of phase hetero- 
geneities which lies between the selecting diaphragm and the WFR mirror. In 
the case Ns2-3 and when the threshold is not exceeded too greatly, the highest 
transverse modes do not participate in lasing    in either conventional or 
WFR resonators.  In this case the zero mode in a conventional resonator is 
highly distorted; moreover the Q-factor may be low due to loss, at the 
diaphragm, of rays deflected by heterogeneities. In contrast to this, in 
a WFR resonator at the same N the lowest mode has a diffracted quality and 
a good Q-factor even when optical heterogeneities are present. Therefore 
a diaphragm of significantly greater dimensions may be used in a WFR resonator 
generating the lowest mode, while simultaneously moving this diaphragm away 
from the exit mirror in order to preserve the Fresnel number N.  This produces 
a payoff both in the divergence of the generated radiation and in the 
effectiveness of energy pick-off from the entire volume of the working medium. 

2.6. Statistics of Fields in Lasers with a Randomly Heterogeneous 
Medium 

Resonators with WFR mirrors are of interest owing to their capacity for 
compensating for aberrations within the resonator, which fluctuate in space 
and in time. The random nature of these fluctuations is responsible for the 
irregularity of the experimentally recorded fields of radiation emerging from 
a laser.  If we are to describe internal resonator fields quantitatively, 
we need to know their statistics—ones such as the mean and the correlation 
function [26-30]. 

Let us examine a resonator formed out of a boundless flat mirror and a WFR 
mirror.  Heterogeneities in the index of refraction of the medium can be 
represented in the form of a thin phase screen positioned near the flat exit 
mirror.  This position of the phase screen is interesting in that hetero- 
geneities of the medium would have a maximum influence upon the form of the 
fields formed by the resonator in this case [1]. Using a standard procedure 
we can obtain an integral equation describing the distribution of the field 
U(t) at the exit mirror: 

yU (p) = j  f U* (t) K{r)H\ (r, t) H i (p, r) T*(l) T (p) dtdr, (37). 

where '//j (r,/)=exp [—ik (r— t)-/2L]  ""free space transfer function; T(p)= 
exp[iS(p)J--phase screen's transmission function; S(p)--random phase run-on 
acquired by a regular wavefront passing through the screen; K(r)--coefficient 
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of reflection of a WFR mirror.  Integral equation (37) was obtained for a 
concrete realization of heterogeneities in the medium's index of refraction. 
In the general case, the form of each individual realization is unknown (or 
it is known with an accuracy to random parameters) and, moreover, it is 
random. Therefore in this situation we can consider only the mean values. 

In order to obtain an expression for the mean field, we need to solve the 
integral equation describing the behavior of modes in the resonator in 
relation to a concrete realization of the medium's index of refraction. Then 
we need to average the resulting expression in relation to all possible 
realizations. However, this approach is possible when the concrete form of 
heterogeneities in the medium's index of refraction is known with an accuracy 
to a small number of random parameters, and if integral equation (37) can 
be solved in relation to this form of heterogeneities. This method was used 
in [29] to determine fields in a resonator with a randomly heterogeneous 
medium taking the form of a lens and a wedge. At large Fresnel numbers the 
basic mode of a resonator with a WFR mirror in relation to wedge hetero- 
geneities (S(p)=6kp, where p is the wedge angle) has the form [29] (K(r)= 
=exp (-r2/a2)) 

('((') iwp I (it-XL  ! 2/ <r)(j• ft/.)2l. W>    : 

It is evident from (38) that a wedge optical heterogeneity does not have an 
influence on the dimension of the beam or on the radius of curvature of the 
wavefront of the radiation; however, the center of the beam at the exit mirror 
is determined by the wedge angle, and it is shifted relative to the position 
of the beams in the absence of heterogeneities by an amount 6L. 

Assuming that the wedge angle 6 is random, that it has a normal distribution 
and that its variance is a2, 

P(6) (l/y'2na)*xf>{     6s/2oB), 

and averaging (38) in relation to all possible angles 6 in accordance with 

the formula  <t/(,,)>„ ' (U ((>, 6) P(6),/6, 
we *et an expression for the mean field 

oo 

in the plane of the exit mirror: 

<(/ ((»)>„-   exp {—(n/XL -| ■ 2i/a") (>"} >; 
X cxp{|(n,7./. ! 2(/a2)(./.|2/|l/o- \-nL/l \-2iL-/a"\). (39) 

The mean mode <U(p)>«$ is formed by all possible modes (38), which occupy 
positions on the exit mirror corresponding to the optical power of the wedge. 
Averaging results in redistribution of energy associated with each mode in 
accordance with a normal distribution, and thus the area occupied by the mean 
mode (39) is proportional to the sum of the areas of the individual modes 

(38). 

42 



Let us consider the fact that such a meticulous examination of the influence 
of wedge aberrations on the behavior of fields in a resonator with a WFR 
mirror is not only of academic interest. Heterogeneities in the index of 
refraction of a rather wide class of active media that are actually encountered 
in experiments may be represented in the form of wedge heterogeneities. Thus 
a random wedge heterogeneity may be approximated by any randomly heterogeneous 
medium which causes mild diffractional spreading of a light beam as it passes 
through. In this context the condition of "mild" diffractional scattering 
means that as it passes forward and back through the resonator, the light 
ray remains within the limits of the same heterogeneities of the medium's 
index of refraction (the width of the angular spectrum of the light field 
scattered by a randomly heterogeneous medium does not exceed the radius of 
correlation of phase heterogeneities). Under such propagation conditions, 
when we expand the realization of phase S(t) in the vicinity of point p into 
a Taylor series, we can limit ourselves to the first two terms: 

S(fl«S (p)+S'(p) :(f-p). 

Then phase run-on for a complete passage S(p)-S(t)=-S'(p)(t-p) is consistent 
with the expression for a wedge for which 6=S'(p).  In this case we should 
keep in mind that S and S' are random functions, and that the distribution 
law of the derivative S' is determined by the distribution law of S.  It is 
known [31] in regard to a normal random process S(p) with correlation 
function R(x) that its derivative 8S(p)/3p is also a normal random process 
with correlation function R1(x)=-R"(x) (variance a|=-R"(0)).  Substituting 
a\  in (39), we get an expression for the mean field in a resonator with a 
WFR mirror in the case of mild diffractional spreading of the beam. 

The approach examined earlier is applicable only to special forms of hetero- 
geneity in the medium's index of refraction for which we can solve the 
integral equation (37).  In all other cases we need to resort to statistical 
methods of obtaining closed (exact or approximate) equations for the moments 
of random fields.  Statistical methods are unique in that they allow us to 
calculate average values pertaining to an ensemble of realizations. 

Averaging (37), we get an integral equation for the mean field in the form 

<Y> <U(f>)>= j j K{r)H\(r,i)Hx(p,r)(T*{i)T(v)U*{iy>drdt.   (40) 
-CO —00 

For each concrete realization of the phase screen, the form of the resonator's 
mode is functionally dependent upon the form of the phase profile of the 
screen, and therefore in the general case the field that establishes in the 
resonator is not statistically independent of fluctuations contributed with 
each passage by the phase screen--that is, correlation of functions U*(t) 
and T*(t)T(p) must be accounted for in (40). 

43 



Equation (40) was solved in [29] without regard for the correlation between 
U*(t) and T*(t)T(p). The correlation may be ignored only in the case of 
intense diffractional beam spreading, where rays traveling on the return pass 
shif^ in the transverse direction by an amount exceeding the radius of corre- 
lation of the screen's phase heterogeneities.  It is clear, however, that 
in this case compensation of phase distortions does not occur. 

The solution to equation (40), which does not account for correlation of the 
field and the transmission function of the phase screen, may be represented 

in the form 
<f/(p)>=exp[-ap2/(l+a2/ß2)V2+tap

2/(l+ß2/ai!))>/2, 

where a=k/2L;    B=kW/4L*+q;    /C(r)-exp(-r2/a2); <7=/?(0)£2//2 --for a randomly 
heterogeneous medium with correlation radius I  and phase correlation function 
#(Pl-p2)=exp[-(Pi-p2)

2//2]A(0) , and q=a2k2/2 for a random wedge. 

It is evident from the last relationships that a solution obtained without 
accounting for the correlation of the field and the transmission function 
of the phase screen can differ strongly from an exact expression for a mean 
field (compare with the exact solution of (39) for a random wedge). This 
approach can be used to obtain expressions for the correlation function of 
the field <U(pi)U*(p2)> similar to expressions for a mean field. 

Dayson's method [31], employed in quantum electrodynamics and in the theory 
of multiple wave scattering, should be used to derive a closed integral 
equation for a mean field (and the correlation function of the field) account- 
ing for the field correlation and the transmission function of the phase 

screen. 

Integral equation (37) for expressing the field in operator form appears as 

follows: 

where K is an integral operator (see (9) and (37)). Let us represent the 
exact values of the field and integral operator K in the form of the sum of 
the mean and the fluctuating part: 

U=V+D,    K=R+1(, 
where the bar and the wavy line indicate the average for the^ensemble of 
realizations and the fluctuating part.  Substituting U=U+U, K=/f+/C xnto 

integral equation (37) in operator form and averaging the latrer, after some 
pie transformations we arrive at an equation for the mean field sim 

ü=~ku*+Rü* (41> 

and field fluctuations (subtracting (41) from operator equation (37)) 

Ü=kV*+KU*+KU*—KÜ*. . (42> 
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In the case where Ki/*=j^O,   it follows from (41) that the equation for the 
mean field does not coincide with the equation for individual realizations 
of this field (37).  As was noted above, this situation occurs in the case 
of mild diffractional beam spreading, where the correlation between the field 
and the transmission function of the phase screen is significant.  Equation 
(42) for field fluctuations is nonlinear relative to Ü and R.  We will use 
the iteration method to express field fluctuations Ü in explicit form. As 
our first approximation iK1' we will use the term in (42) not containing Ü: 
JJO)-JKD*. 

Continuing the iteration process--that is, successively suDstituting fKn_1' 
in the right side of equation (42), we will obtain n-th order approximations 
for field fluctuations.  Next, substituting this approximation U^n) for field 
fluctuations in equation (41), we get a closed equation for the mean field 
U^nJ, which as an example has the following form in the first-order approxi- 
mation: 

At first glance the last equation does not appear better in any way than 
equation (37) in operator form; it even looks more complex.  But this is not 
so, inasmuch as the equation for UA1' contains averaged smooth operators, 
in distinction from equation (37), operator K of which includes rapidly oscil- 
lating functions. 

A detailed examination of the behavior of the mean field and its correlation 
function in resonators with a randomly heterogeneous medium using Dayson's 
method will be published in the near future. 

2.7.  Numerical Results of Modeling Lasers with WFR Mirrors 

As we saw in the previous sections, the values of aberrations that may be 
corrected are limited by the transverse dimensions of the WFR mirror and the 
exit mirror.  In the case where the transverse dimensions of these mirrors 
are large, and namely when 

Nn - WlvllL, N0B<t, = WU/XL > 1, 

the fundamental modes in a laser with a WFR mirror are represented by Gaussian- 
Hermitian beams.  But if the dimensions of the mirrors become comparable with 
the dimensions of the beams at these mirrors, then owing to diffraction 
effects the Gaussian beam approximation ceases to be valid.  Characteristic 
solutions at small Fresnel numbers may be determined by numerical methods, 
ones such as the well known (Foks-Li) and (Proni) methods. 

Transverse modes in a laser with a limited WFR mirror were subjected to 
numerical calculation in [22] using a fast Fourier transformation. A 
resonator with length 2L consisting of a boundless flat mirror, a diaphragm 
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with width 2a positioned a distance L from a conventional mirror, and a WFR 
mirror with width 2b was examined in this work. The table gives the eigen- 
values for WFR and conventional resonators. 

(1) (2) 

Nn~ay}.L b/a 
sf 

*i   o P-x 

G 
to 
O 

1,875 
1,875 
0,300 

1,2 
4,0 

10,0 

0,849 
0,835 
0,260 

0,990 
0,999 
0,530 

Key: 
Conventional 2. WFR 

Figure 3. Dependence of Attenuation of Mode Intensity \y\     in One 
Passage (a) and (Strel's) Number S (b) on the Amplitude 
of the Phase Grating $0 for WFR (1) and Conventional 
(2) Resonators 

This work also analyzed the influence of phase distortions inside the 
resonator on mode behavior.  The fundamental mode in a resonator with a 
phase grating positioned flush with the diaphragm and separated from the 
conventional and WFR mirrors by a distance L was determined numerically. 
The grating had a phase distribution Afl>(*)=A<J>0cos(2it*/r).  Figure 3 shows 
the eigenvalues and Strel's number, which is equal to the ratio of intensi- 
ties of exit radiation in the presence of a phase screen and without it, 
depending on phase dispersion A$0 when 2a/T=10, Na=1.875 and b/a=4. As 
would have been expected, when a phase grating is present the diffraction 
losses, which are equal to 1-|Y|2, assume smaller values while Strel s 
number assumes larger values for a resonator with a WFR mirror than for a 
resonator with conventional mirrors. 

An internal resonator adaptive system was subjected to numerical modeling 

in [32]. 

46 



2.8. Steady-State Energy Characteristics of SWFR Mirror Lasers 

Use of WFR mirrors in lasers has a number of specific characteristics 
associated with the nonlinear dependence of the coefficient of reflection 
on the intensity of the reference waves.  Under certain conditions this 
dependence may lead to the existence of numerous energetic steady states of 
exit radiation [11,33]. 

We will analyze amplification of crossing waves in the active medium of a 
laser (see Figure 2) on the basis of a two-level concentrated model of the 
active medium.  Within the framework of this model, in the steady-state case, 
when the duration of the laser pulse exceeds the times of longitudinal and 
transverse relaxation of the medium, the amplification factor is 

x-exp[G0/(l+ /)'"], (43) 

where I0--intensity of the internal resonator field, normalized in relation 
to the intensity of saturation of the active medium; G0--unsaturated incre- 
ment of amplification by a weak wave; m--saturation index (m=l for a homo- 
geneously widened luminescence line, and m=l/2 for a heterogeneously 
widened luminescence line). 

For the standard FWM model, the effectiveness of reflection with respect to 
intensity R0 of the signal wave I3 into a reversed wave is determined by the 
relationship 

#o=tg%/on), (44) 

where q--interaction constant; Ion--intensity of reference waves.  Relation- 
ship (44) is valid in the approximation of a given field of reference waves-- 
that is, on the condition that I3, Ilt<<I0n-  

Let 1o  be the intensity of the 
resonator field striking the exit mirror, which has a reflection coefficient 
Rg (where TB=(1-Rg) is the transmission factor).  The intensity of the 
reference waves is Ion=I0TBR3; then the intensity of the wave reflected from 
the WFR mirror is 

U=hlg\qI»T*Rz), (45) 

where R3 is the coefficient of reflection of semitransparent mirror 3 
(Figure 2); h—hRj*- 

Lasing occurs in the case when the losses are balanced by amplification. 
Ignoring diffraction losses and accounting only for losses associated with 
departure of radiation from the resonator, we get the threshold condition 
for lasing in the form 

/0=/4x, 

which assumes the following form after expressions (43)-(45) are substituted 
into it: 

tg2 [qRa (1 - /?„) /„] = exp [ - 2G0/( 1 + /„)'" ] R»' •        (46) 
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The solution to this equation may be found graphically, as shown in 
Figure 4.  If the amplification curve possesses a point of inflection, then 
several solutions to (46) may exist in one period {g(-v) (<lRaO -    /?,)/„< n/2). 
A point of inflection occurs when G0>2 for a homogeneously widened line and 
G0>3 for a heterogeneously widened luminescence line [11]. Thus an SWFR 
mirror laser may exist in several discrete energy states if the amplification 
factor is sufficiently high; moreover, some of these states are stable [11]. 
The possibility an SWFR mirror laser has for lasing in higher energy states 
would be determined by the conditions under which the laser is excited. 

Figure 4.  Graphical Determination of Steady-State Levels of the 
Intensity of the Internal Resonator Field I0 in an SWFR 
Mirror Laser 

In view of the periodicity of the tangent, the threshold condition of lasing 
may also be satisfied at greater values l[n>  of the intensity of the internal 
resonator field, determined by the relationship 

^(^^/«"»^arctg |exp(-2G0/(l +4'°)'") R'^ + nn.       (47) 

The range of possible l(n) is limited by the energy stored in the laser. 

Figure 5 gives the intensities of exit radiation calculated in [11], 
normalized in relation to the intensity of saturation of the active medium, 
for lasers with an external reference wave source and with an SWFR mirror. 

The energy characteristics of a laser with an external reference wave source 
were calculated in [33], and nonmonotonic dependencies of lasing intensity 
on the correlation constant and presence of regions of bistable and multi- 
stable solutions were predicted. Experimental confirmation of the behavior 
of the intensity of the oscillating wave predicted in [33] is reported in 
[34]. 

Conditions for self-excitation of a resonator with four-wave hypersonic 
reversing mirrors were obtained in [35-38].  The thresholds of the inten- 
sities of WFR mirror pumping waves which, when exceeded in this resonator, 
generate optical radiation were found.  It was demonstrated that the 
thresholds of pumping wave intensities and the lasing frequencies depend 
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10     20    30 f-0 

Figure 5.  Dependence of the Intensity of Exit Radiation on the 
Unsaturated Amplification Factor of the Medium in Lasers 
with an External Reference Wave Source (1) and with an 
SWFR Mirror (2) [11] 

Key: 
1. Relative units db 

periodically on the distance between the reversing mirrors.  Lasers with WFR 
mirrors based on ChW [not further identified] in photorefractive media are 

examined in [39-41]. 

2.9.  Effectiveness of WFR Mirror Lasers. 
Lasers [11] 

Comparison with Conventional 

WFR mirror lasers make it possible to improve the quality of the beam, but 
part of the energy is used to pump the WFR mirror.  On the other hand radiation 
from a conventional laser produces a beam of poorer quality, but the output 
power is higher than for a similar laser with a WFR mirror.  In this context 
the term "similar" indicates a laser with equal losses and an unsaturated 
amplification factor.  The effectiveness of lasers with WFR and conventional 
mirrors may be assessed comparatively on the basis of energy concentrated 
in the angle determined by diffractional divergence of the beam in the case 
of identical energy entering the system.  In the ideal case, the exit energy 
of a WFR mirror laser is equal to PH#, and the beam exhibits diffractional 
divergence. A conventional laser with optimum radiation output has maximum 
exit energy P0.  As a rule, the exit radiation of a conventional laser 
experiences significant distortions; in this case the quality of the beam 
is determined by parameter ß, equal to the ratio between beam divergence and 
the diffraction angle.  Let us designate by ße the quality of the beam of a 
conventional laser at which equal exit energies are concentrated in the 
diffraction angle of this laser and a WFR mirror laser: 

'PJti + P*, $e=--[P0l{Pm-Px)) (48) 

Relationship (48) includes the energy Px of an external pumping source (if it 
is present), because reference waves possess beam quality no worse than that 
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of the beam exiting from a WFR mirror laser, and the energy of this external 
source decreases the effectiveness of the entire system.  If the divergence 
of a conventional laser exceeds diffractional divergence by ße times--that is, 
if ß=ße» then the energy of the exit radiation of this laser concentrated in 
the diffraction angle equals the exit energy of an SWFR mirror laser (for 
a laser with an external pumping source, Pam—PJ.     If ß<ße» tnen the energy 
of exit radiation in the diffraction angle of a conventional laser is higher 
than that of an SWFR mirror laser, while when ß>ße, the reverse is true. 
This is why it would be desirable to have small values of ße for WFR mirror 
lasers. Figures 5 and 6 [11] show the dependence of £m and ße on the un- 
saturated amplification factor G0 for lasers with an external reference wave 
source and with an SFWR mirror characterized by different correlation 
constants. We can see that the threshold of the amplification factor G0 is 

greater for the laser with the SWFR mirror. At low amplification factors 
both the exit energy and radiation quality ße are approximately consistent in 
both cases. As G0 increases further, the effectiveness (at lower ße) of a 
laser with a self-pumping WFR mirror increases in comparison with a laser 
possessing an external reference wave source. 

20    30   40   ,   ^ 

Figure 6. Dependence of Parameter ße on the Unsaturated Amplifica- 
tion Factor of the Medium and Lasers with an External 
Reference Wave Source (1) and with an SWFR Mirror (2) 

[11] 

Key: 
db 

In situations where exit energy is important and the quality of the active 
medium is poor (divergence of radiation exceeds the diffraction limits by 
more than two times, ß£2), SWFR mirror lasers surpass all examined types 
of lasers in effectiveness.  Therefore it would be suitable to use an SWFR 
mirror resonator in lasers with a high amplification factor (*£100 per pass) 
and with a poor-quality active medium (ßä2). 
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2.10. Experimental Results 

There are now a rather large number of publications concerned with experimental 
research on WFR mirror lasers. A pulsed ruby laser with an FWM mirror was 
first achieved in [8]. As Figure 7 shows, an FWM mirror is a cell 40 cm 
long containing CS2, and the pumping waves were created by a second pulsed 
ruby laser. In order to increase the length of nonlinear interaction, the 
reference waves propagated parallel to the optical axis of the WFR resonator, 
and polarizers were used to separate the reference waves from the reversed 
wave. The energy of the pulse exiting from the WI-i  resonator was around 
1 percent of the energy of the reference waves. 

h 
' (w)F 

Ex B 
'i i tu 

Figure 7.  Ruby Laser with an External Reference Wave Source [8] 
l--mirror; 2--ruby; 3--(Glan's) prism; 4--FWM medium 

Figure 8.  Copper Vapor Laser with an Externally Pumped WFR Mirror 
[43]:  l-3--mirrors; 4--copper vapor 

Lasing was achieved in [42] by a flat mirror and a WFR mirror in which a 
BaTi03 crystal served as the nonlinear medium and an argon laser served as 
the pumping source. When a phase plate was introduced near the WFR mirror, 
the intensity of exit radiation did not weaken noticeably. 

It is reported in [43] that lasing was achieved and studied in a resonator 
with a WFR mirror formed by four-wave mixing in a resonance-amplifying medium 
of Cu vapor excited in a longitudinal discharge.  The active zone of the 
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discharge had a diameter of 7 mm and a length of 50 cm. Crossing pumping 
waves were formed by a resonator (Figure 8) consisting of flat mirrors 1 
and 2. Spatial coherence of pumping waves is achieved by positioning the 
diaphragms. Mirror 3 was adjusted in such a way that its axis crossed the 
axis of the pumping beam near the opposite end of the tube. The angle between 
the axes was 6 mrad. The effective reflection coefficient for the WFR mirror 
was 10"5 in the case of a pumping beam with A=510 nm having a power density 
of 2.5 kW/cm2. Owing to the large amplification factor of the active medium 
(G0=12), such reflection was sufficient to cause lasing in the WFR mirror 
resonator, the power of which was comparable to the pumping power.  The 
lasing pulse (T=5-8 nsec) was about two times shorter than the pumping 
pulse. 

In a series of experiments conducted in [A4], a central longitudinal mode 
was observed, as the theory predicted, at the pumping frequency in addition 
to a pair of modes tuned away from the central frequency by an amount c/4L. 

The possibility of using an inverse parametric relationship in relation to 
wavefront reversal in the presence of ChW was demonstrated in [45-50]. 

Lasing was achieved by SWFR mirror lasers in [45,50]. Difficulties associated 
with self-excitation of such systems are obvious, inasmuch as in the initial 
stage of achieving a positive feedback is practically absent owing to the weak 
intensities of the noise waves participating in four-wave mixing and their 
low degree of spatial-temporal coherence (the resonator is not closed in 
the direction of the WFR mirror).  Lasing of this sort was achieved experi- 
mentally in [45] using a garnet laser; a saturating absorbent was used as 
the FWM medium. 

To facilitate self-excitation, lasing was initiated in [45] between mirrors 
1 and 2, as with a conventional läser (shown by the dot-dash line in Figure 9). 
Feedback was achieved in the WFR resonator (shown by a thin line) owing to 
four-wave mixing by means of reflection of a wave striking a cell containing 
saturating absorbent at a small angle to the optical axis of the conventional 
laser.  Interaction between the WFR and conventional lasers was controlled 
by a (Pokkels) cell 5 and a polarizing splitter 6.  After lasing appeared, 
the Pokkels cell was used to shut off mirror 2, after which lasing continued 
in the WFR mirror resonator. 

\y 

X 

2 

\ / 

Figure 9. Laser with an SWFR Mirror and with Preliminary Initiation 
of Lasing [45]: 1,2—mirrors; 3--WFR medium; 4--AYG:Nd3+ 

rod; 5--Pokkels cell; 6--polarizing splitter 
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Figure 10.  Copper Vapor Laser with an SWFR Mirror [50]:  l-3--beams; 
4-6--mirrors; 7--diaphragm; 8--copper vapor 

The principal distinguishing feature of the SWFR mirror laser created in 
[50] is that self-excitation of the laser was achieved without additional 
devices intended to initiate lasing, as in [45].  A pulsed copper vapor laser 
was used in the study (X=510.6 nm, %=30 nsec, channel diameter 8 mm). FWM 
occurred in the laser's active medium as diagrammed in Figure 10. The co- 
efficients of reflection of flat mirrors 4-6 were 80, 100 and 4 percent 
respectively. The angle at which the beams crossed in the region of inter- 
action was 0.01 rad.  The aperture of the beams was limited by diaphragm 7 
with a diameter of 2 mm. Energy, pulse shape and the spatial structure of 
exit radiation in direction 1, 2 and 3 were recorded. The transverse 
structure of each beam consisted of a halo of superluminescent radiation 
and a central, more powerful core; in this case the core of beam 3 was 
extended somewhat in the vertical direction. 

Beam divergence in the far zone, determined from the dimension of the core, 
was Ö-IO-1* rad for beams 1 and 2 and 3*10"3 rad for beam 3 (in the vertical 
direction).  The peak intensity levels in the cores of beams 1, 2, 3 were 
0.2, 150 and 0.5 W/cm2 respectively. When either of the branches of the 
resonator were cut off, the core disappeared in all beams, which was proof 
of formation of radiation making up the core as a result of parametric 
oscillation. When phase heterogeneity was introduced between mirror 6 and 
the active medium, the transverse structure of beam 2 underwent distortion, 
while that of beams 1 and 3 remained practically unchanged, which was a 
manifestation of the adaptive properties of a WFR mirror.  The noncritical 
nature of this system in relation to the position of conventional mirror 4 
is a distinguishing feature of this system: Owing to    geometric factors, 
synchronization of beams registering the grating occurs automatically. 

The first successful realization of a WFR mirror laser operating in free 
oscillation mode is reported in [51]. Incidental four-beam interaction was 
used to achieve wavefront reversal in this mode. 

3.  SBS Cell Resonators 

Use of SBS cells to modulate the Q-factor of a 
pulsed laser has a rather long history (see for example [7]).  Interest in 
such resonators arose anew in connection with the discovery of the phenomenon 
of self-reversal of a wavefront with SBS.  The typical design of an SBS 
cell laser is shown in Figure 11 (see [52-56]).  Unfortunately there is 
presently no quantitative theory or even an understanding of all of the 
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processes significant to the work of such a laser.  Therefore we will limit 
ourselves to just a brief description of some experimental results. 

The typical frequency shift with SBS  is %6/2irc~0.1 cm"
1 (this figure is 

for SBS in acetone at X=l u). For a resonator with length L=2 m, the 
distance between modes with adjacent longitudinal indices is ÄQ^^^nc^^ 
= (2L)_1«2,5-lO-3 CM"

1--that is, it is approximately 40 times less.  Therefore 
for practical purposes we can always find resonator modes with a frequency 
difference coinciding with %6 with an accuracy to the width of a scattering 
line T.  Thus the absolute value of the resonator's length has little 
influence on the laser operating mode.  However, as experiments showed, this 
mode is extremely sensitive to the position of the scattering region within 
the resonator [3]; the position of the SBS mirror is determined by the 
location of the focal constriction of the telescope within the VR-active 
medium (Figure 11). 

Figure 11.  Laser with a SBS cell [3]:  l,2--mirrors; 3--amplifier; 
A--SBS cell 

Different operating modes can be achieved with such a laser.  First there 
is the free oscillation mode, where SBS is not developed at all. Next, 
with the resonator tuned in a particular way, different frequency components 
of the crossing waves already generated by the laser are phased in the region 
of the constriction in such a way as to effectively excite a hypersonic wave. 
If in addition the coefficient of reflection of mirror 2 in Figure 11 is 
noticeably less than unity, then given that a sufficiently effective acoustic 
reflecting hologram arises in the constriction, the resonator's Q-factor 
grows abruptly, and a gigantic pulse is generated. 

The emission spectrum occurring in the presence of SBS may consist of several 
equidistant spectral components separated by a shift %g [7].  Moreover 
gradual displacement of the middle oscillation frequency into the Stokes 
region was observed in an experiment [4], such that in the time of one passage 
through the resonator the frequency shifted by an amount %g. 

Low selectivity in relation to the transverse structure of radiation, which 
corresponds with the general properties of WFR resonators, was noted for 
SBS  cell resonators [3,4].  In this case the generated radiation exhibited 
angular divergence noticeably greater than the diffraction limit.  Nonethe- 
less, transverse (spatial) coherence of the radiation, measured by Young's 
method, was high; the authors of [3] associated this with the inertia of 
hypersound pumping. 
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Extremely interesting results were obtained in [53,54] from research on the 
spatial and temporal structure of a laser in which the Q-factor was modulated 
by SBS and VTR [not further identified]. 

A gigantic oscillation pulse with the diffraction quality of the transverse 
structure of the exit beam was obtain with SBS in [52] using a configuration 
of mirrors which acted as an unstable resonator in the absence of SBS processes. 

The results of experimental research on the spatial characteristics of the 
radiation of a laser regenerative amplifier with an unstable telescopic 
resonator including an SBS mirror (Figure 12), the design of which is similar 
to that proposed in [23], are presented in [57].  The amplifier was made 
to work in regenerative mode by introducing "triggering" radiation from an 
initiating laser through an SBS mirror in subthreshold mode. The device con- 
sisted of an AYG:Nd active element with a nonlinear SBS mirror medium—heavy 
water (inactive losses -0.006 cm"1, SBS threshold ~4 mJ). 

Figure 12. AYG:Nd3+ (1) Ring Laser with an SBS Cell (2) 

4.  Pseudo-WFR by Means of Retromirrors 

Were we to set up three mutually perpendicular flat mirrors in the form of 
a corner of a cube, then the incident ray would experience reflection from 
all three mirrors:  kx,ky,kz->-kx,-ky,-kz.  In this corner reflector the field 
transformation relationship would have the form of the inversion 

£,n,,(R); ÄHAPRO-R) (49) 

relative to the apex R0 of the corner reflector. 

Reversal of the direction of propagation k->-k of any plane wave is a remark- 
able property of a corner reflector.  It is no less remarkable that this 
property does not depend on the orientation of the reflector itself:  Only 
coordinate R0 of the apex of the corner enters into the transformation. 
Corner reflectors of this type are widely used in automobiles, motorcycles 
and bicycles as cat's eyes, sometimes referred to as retromirrors. 

At first glance the operation k->~k recalls wavefront reversal.  Relationship 
(49) shows, however, that in this case wavefront reversal does not occur. 
Real wavefront reversal not only causes the direction of each plane wave 
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to reverse, but it also changes the sign of the relative difference of their 
phases.  Contrary to this, linear operation (49) (which does not entail 
complex conjugation) reverses only the direction of propagation.  In the 
language of ray optics, preservation of phase relationships corresponds to 
a transverse shift of an individual ray by 2a (Figure 13). 

Figure 13. Path of Rays in a Corner Reflector 

A spherical wave diverging from a source with coordinate R' is transformed 
by a corner reflector not into a wave that converges toward R', as was the 
case with WFR, but rather into a wave diverging from a new source with 
coordinates R"=2R0-R'. Thus within the limits of the aperture of the corner 
reflector, reversal of the central direction occurs, and not reversal of 
the curvature of the spherical wave beam.  Let the transverse dimension D 
of a corner reflector be limited.  Let us designate the radius of curvature 
of the wavefront of the incident spherical wave by r0, and let r0»D.  Then 
deflection of the wavefront in comparison with a plane normal to the central 
direction of propagation is 6h~D2/r0.  If 6h«A, then with an accuracy to 
correction factors ~(6h/A)2 (in relation to energy), within the limits of 
aperture D operation (49) corresponds to a WFR operation. 

To raise the effectiveness of the system we often use not one corner 
reflector but an entire set of reflectors of smaller dimensions characterized 
by the set of coordinates Rlt   ..., Rtf of their apexes.  Then the field 
falling within the aperture of reflector i is transformed in accordance with 
relationship (49) with the corresponding R0=Ri-  Owing to this, reversal of 
the central direction (that is, reversal of the average slope of the wave- 
front) occurs within the limits of each reflector, and the maximum transverse 
shift is limited by the dimensions of one element. 

But there is a limit of suitable breakdown of individual elements.  More 
precisely, even if we achieve WFR within the limits of each element, nonethe- 
less the phases of the fields reflected by the different elements exhibit 
relative phase shifts on the order of 2k(Ri~Rj).  In the general case the 
wavefront of reflected radiation possesses discontinuities in the gaps between 
elements.  Because of these discontinuities the reflected radiation acquires 
additional divergence 68-X/D, corresponding to diffraction at the aperture 
of one element. 

Let us examine a two-pass system for compensating for distortions contributed 
by the amplifier using a set of corner reflectors [58-65] with dimension 2D 
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Figure 14. 

l~--  -L  - --I 

Amplifier (1) with Retromirror (2) 

(Figure 14).  Let a plane wave be distorted in the first pass, producing 
some irregular distribution 9(x) of the slope of ray 8 depending on transverse 
coordinate x.  In the approximation of geometric optics, an individual 
element reverses the direction of a ray striking it with a transverse shift 
ö
OT|. (*)Ä -öi<:<;> (x '"a^ where a^D.  As a result angular imprecision of compensa- 

tion ööi-DdS/dx arises during the return pass through the amplifier. 
Finally, the wavefront of the corrected radiation consists of independent 
segments with dimensions ~D, which leads to additional angular distortions, 
<59=892. In the end, we get an estimation formula for divergence after two 
passes involving reflection from a retromirror: 

e„cn;.- 89, + 662 + 603 = -g- DH--A- (1 -f L -£.). (50) 

To evaluate the effectiveness of compensation we can compare 9Hcnp ^
rom (50) 

with divergence 90 obtained after one-pass amplification.  In this case 
d9/dx~90/Z~l/R, where I  is the transverse scale of heterogeneity of function 
0(x); R--characteristic local radius of curvature of the distorted wavefront. 
The payoff in divergence is 

eo/e„o„p~l£>//, +K(\ +UR)/DB0]-1. (51) 

When L=0, relationship (51) is greater than unity (that is, there is a payoff) 

when 

M%3D,^.l.. (52) 

It is not difficult to understand that the gain from using a retromirror 
in this system would be significant only if A/90«£j_--that is, if distortions 
in the amplifier are large:  Local phase perturbation 6tft~k9fl£ i »1.  The 
optimum payoff eo/6IlCnv1~V

reo/(V/:) is achieved when D~Vli\/Q0.     Here is a 
numerical example.  When 90~10"

2 rad, l±~l  cm, A-10"1* cm, we have a maximum 

payoff of 90/9Hcrip~10 when D~l mm.  The resulting divergence is 10 times 

57 



greater than the diffraction limit \/lL  in the case of a transverse dimension 
of Z-i-1 cm; nonetheless, it is 10 times better than the uncorrected divergence 
60.  If the dimension of elementary reflectors D is greater than optimum, 
then the  gain worsens, being ~Z-j_/D. 

In the other limiting case (less advantageous), where L»R^l, /90, we have 

D~t ä V^L  and the gain is ,■ e0/6HCn;i « l.,D'oPt « ]/"/" AL; this gain is 

greater than unity only when L^T'.A- 

We have thus far assumed that wavefront perturbations are greater than the 
wavelength, and we used the concepts of geometric optics.  If phase distor- 
tions are less than or on the order of 1 rad, then the examination must be 
carried out by different methods. Referring the reader to the reviews [63, 
64] for details, we point out here that in this case as well, use of a retro- 
reflector makes it possible to compensate for part of the phase distortions 
(and namely, the component of phase perturbation that is uneven in relation 
to the midpoint of the reflector). 

The compensating capabilities of retromirrors were demonstrated experimen- 
tally in [58], in whicn divergence of a neodymium glass amplifier was improved 
by four times using a two-pass system.  A set of retromirrors was used in 
[59] as one of the mirrors of a laser resonator, which made it possible to 
reduce divergence of a laser with an optically heterogeneous active medium 
by 10 times. 

5.  Conclusion 

The basic types of WFR mirror lasers were examined above.  Attention 
was focused on lasers with FWM mirrors, which are now enjoying the widest 
application.  To permit practical use of FWM mirrors in laser systems, we 
need to solve problems concerned with formation of high quality reference 
waves, with effective use of energy stored in the medium, and with synchroni- 
zation of the reference and signal waves.  In theory, the entire set of these 
problems can be solved in lasers with an SWFR mirror. 
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